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Preface

General Approach and Mathematical Level

Our emphasis in creating the ninth edition is less on adding new material and more
on providing clarity and deeper understanding. This objective was accomplished in
part by including new end-of-chapter material that adds connective tissue between
chapters. We a�ectionately call these comments at the end of the chapter •Pot
Holes.Ž They are very useful to remind students of the big picture and how each
chapter “ts into that picture, and they aid the student in learning about limitations
and pitfalls that may result if procedures are misused. A deeper understanding
of real-world use of statistics is made available through class projects, which were
added in several chapters. These projects provide the opportunity for students
alone, or in groups, to gather their own experimental data and draw inferences. In
some cases, the work involves a problem whose solution will illustrate the meaning
of a concept or provide an empirical understanding of an important statistical
result. Some existing examples were expanded and new ones were introduced to
create •case studies,Ž in which commentary is provided to give the student a clear
understanding of a statistical concept in the context of a practical situation.

In this edition, we continue to emphasize a balance between theory and appli-
cations. Calculus and other types of mathematical support (e.g., linear algebra)
are used at about the same level as in previous editions. The coverage of an-
alytical tools in statistics is enhanced with the use of calculus when discussion
centers on rules and concepts in probability. Probability distributions and sta-
tistical inference are highlighted in Chapters 2 through 10. Linear algebra and
matrices are very lightly applied in Chapters 11 through 15, where linear regres-
sion and analysis of variance are covered. Students using this text should have
had the equivalent of one semester of di�erential and integral calculus. Linear
algebra is helpful but not necessary so long as the section in Chapter 12 on mul-
tiple linear regression using matrix algebra is not covered by the instructor. As
in previous editions, a large number of exercises that deal with real-life scienti“c
and engineering applications are available to challenge the student. The many
data sets associated with the exercises are available for download from the website
http://www.pearsonhighered.com/datasets.

xv
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Summary of the Changes in the Ninth Edition

€ Class projects were added in several chapters to provide a deeper understand-
ing of the real-world use of statistics. Students are asked to produce or gather
their own experimental data and draw inferences from these data.

€ More case studies were added and others expanded to help students under-
stand the statistical methods being presented in the context of a real-life situ-
ation. For example, the interpretation of con“dence limits, prediction limits,
and tolerance limits is given using a real-life situation.

€ •Pot HolesŽ were added at the end of some chapters and expanded in others.
These comments are intended to present each chapter in the context of the
big picture and discuss how the chapters relate to one another. They also
provide cautions about the possible misuse of statistical techniques presented
in the chapter.

€ Chapter 1 has been enhanced to include more on single-number statistics as
well as graphical techniques. New fundamental material on sampling and
experimental design is presented.

€ Examples added to Chapter 8 on sampling distributions are intended to moti-
vate P-values and hypothesis testing. This prepares the student for the more
challenging material on these topics that will be presented in Chapter 10.

€ Chapter 12 contains additional development regarding the e�ect of a single
regression variable in a model in which collinearity with other variables is
severe.

€ Chapter 15 now introduces material on the important topic of response surface
methodology (RSM). The use of noise variables in RSM allows the illustration
of mean and variance (dual response surface) modeling.

€ The central composite design (CCD) is introduced in Chapter 15.

€ More examples are given in Chapter 18, and the discussion of using Bayesian
methods for statistical decision making has been enhanced.

Content and Course Planning

This text is designed for either a one- or a two-semester course. A reasonable
plan for a one-semester course might include Chapters 1 through 10. This would
result in a curriculum that concluded with the fundamentals of both estimation
and hypothesis testing. Instructors who desire that students be exposed to simple
linear regression may wish to include a portion of Chapter 11. For instructors
who desire to have analysis of variance included rather than regression, the one-
semester course may include Chapter 13 rather than Chapters 11 and 12. Chapter
13 features one-factor analysis of variance. Another option is to eliminate portions
of Chapters 5 and/or 6 as well as Chapter 7. With this option, one or more of
the discrete or continuous distributions in Chapters 5 and 6 may be eliminated.
These distributions include the negative binomial, geometric, gamma, Weibull,
beta, and log normal distributions. Other features that one might consider re-
moving from a one-semester curriculum include maximum likelihood estimation,
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prediction, and/or tolerance limits in Chapter 9. A one-semester curriculum has
built-in ”exibility, depending on the relative interest of the instructor in regression,
analysis of variance, experimental design, and response surface methods (Chapter
15). There are several discrete and continuous distributions (Chapters 5 and 6)
that have applications in a variety of engineering and scienti“c areas.

Chapters 11 through 18 contain substantial material that can be added for the
second semester of a two-semester course. The material on simple and multiple
linear regression is in Chapters 11 and 12, respectively. Chapter 12 alone o�ers a
substantial amount of ”exibility. Multiple linear regression includes such •special
topicsŽ as categorical or indicator variables, sequential methods of model selection
such as stepwise regression, the study of residuals for the detection of violations
of assumptions, cross validation and the use of the PRESS statistic as well as
Cp, and logistic regression. The use of orthogonal regressors, a precursor to the
experimental design in Chapter 15, is highlighted. Chapters 13 and 14 o�er a
relatively large amount of material on analysis of variance (ANOVA) with “xed,
random, and mixed models. Chapter 15 highlights the application of two-level
designs in the context of full and fractional factorial experiments (2k ). Special
screening designs are illustrated. Chapter 15 also features a new section on response
surface methodology (RSM) to illustrate the use of experimental design for “nding
optimal process conditions. The “tting of a second order model through the use of
a central composite design is discussed. RSM is expanded to cover the analysis of
robust parameter design type problems. Noise variables are used to accommodate
dual response surface models. Chapters 16, 17, and 18 contain a moderate amount
of material on nonparametric statistics, quality control, and Bayesian inference.

Chapter 1 is an overview of statistical inference presented on a mathematically
simple level. It has been expanded from the eighth edition to more thoroughly
cover single-number statistics and graphical techniques. It is designed to give
students a preliminary presentation of elementary concepts that will allow them to
understand more involved details that follow. Elementary concepts in sampling,
data collection, and experimental design are presented, and rudimentary aspects
of graphical tools are introduced, as well as a sense of what is garnered from a
data set. Stem-and-leaf plots and box-and-whisker plots have been added. Graphs
are better organized and labeled. The discussion of uncertainty and variation in
a system is thorough and well illustrated. There are examples of how to sort
out the important characteristics of a scienti“c process or system, and these ideas
are illustrated in practical settings such as manufacturing processes, biomedical
studies, and studies of biological and other scienti“c systems. A contrast is made
between the use of discrete and continuous data. Emphasis is placed on the use
of models and the information concerning statistical models that can be obtained
from graphical tools.

Chapters 2, 3, and 4 deal with basic probability as well as discrete and contin-
uous random variables. Chapters 5 and 6 focus on speci“c discrete and continuous
distributions as well as relationships among them. These chapters also highlight
examples of applications of the distributions in real-life scienti“c and engineering
studies. Examples, case studies, and a large number of exercises edify the student
concerning the use of these distributions. Projects bring the practical use of these
distributions to life through group work. Chapter 7 is the most theoretical chapter
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in the text. It deals with transformation of random variables and will likely not be
used unless the instructor wishes to teach a relatively theoretical course. Chapter
8 contains graphical material, expanding on the more elementary set of graphi-
cal tools presented and illustrated in Chapter 1. Probability plotting is discussed
and illustrated with examples. The very important concept of sampling distribu-
tions is presented thoroughly, and illustrations are given that involve the central
limit theorem and the distribution of a sample variance under normal, independent
(i.i.d.) sampling. The t and F distributions are introduced to motivate their use
in chapters to follow. New material in Chapter 8 helps the student to visualize the
importance of hypothesis testing, motivating the concept of aP-value.

Chapter 9 contains material on one- and two-sample point and interval esti-
mation. A thorough discussion with examples points out the contrast between the
di�erent types of intervals„con“dence intervals, prediction intervals, and toler-
ance intervals. A case study illustrates the three types of statistical intervals in the
context of a manufacturing situation. This case study highlights the di�erences
among the intervals, their sources, and the assumptions made in their develop-
ment, as well as what type of scienti“c study or question requires the use of each
one. A new approximation method has been added for the inference concerning a
proportion. Chapter 10 begins with a basic presentation on the pragmatic mean-
ing of hypothesis testing, with emphasis on such fundamental concepts as null and
alternative hypotheses, the role of probability and the P-value, and the power of
a test. Following this, illustrations are given of tests concerning one and two sam-
ples under standard conditions. The two-samplet-test with paired observations
is also described. A case study helps the student to develop a clear picture of
what interaction among factors really means as well as the dangers that can arise
when interaction between treatments and experimental units exists. At the end of
Chapter 10 is a very important section that relates Chapters 9 and 10 (estimation
and hypothesis testing) to Chapters 11 through 16, where statistical modeling is
prominent. It is important that the student be aware of the strong connection.

Chapters 11 and 12 contain material on simple and multiple linear regression,
respectively. Considerably more attention is given in this edition to the e�ect that
collinearity among the regression variables plays. A situation is presented that
shows how the role of a single regression variable can depend in large part on what
regressors are in the model with it. The sequential model selection procedures (for-
ward, backward, stepwise, etc.) are then revisited in regard to this concept, and
the rationale for using certain P-values with these procedures is provided. Chap-
ter 12 o�ers material on nonlinear modeling with a special presentation of logistic
regression, which has applications in engineering and the biological sciences. The
material on multiple regression is quite extensive and thus provides considerable
”exibility for the instructor, as indicated earlier. At the end of Chapter 12 is com-
mentary relating that chapter to Chapters 14 and 15. Several features were added
that provide a better understanding of the material in general. For example, the
end-of-chapter material deals with cautions and di�culties one might encounter.
It is pointed out that there are types of responses that occur naturally in practice
(e.g. proportion responses, count responses, and several others) with which stan-
dard least squares regression should not be used because standard assumptions do
not hold and violation of assumptions may induce serious errors. The suggestion is



Preface xix

made that data transformation on the response may alleviate the problem in some
cases. Flexibility is again available in Chapters 13 and 14, on the topic of analysis
of variance. Chapter 13 covers one-factor ANOVA in the context of a completely
randomized design. Complementary topics include tests on variances and multiple
comparisons. Comparisons of treatments in blocks are highlighted, along with the
topic of randomized complete blocks. Graphical methods are extended to ANOVA
to aid the student in supplementing the formal inference with a pictorial type of in-
ference that can aid scientists and engineers in presenting material. A new project
is given in which students incorporate the appropriate randomization into each
plan and use graphical techniques andP-values in reporting the results. Chapter
14 extends the material in Chapter 13 to accommodate two or more factors that
are in a factorial structure. The ANOVA presentation in Chapter 14 includes work
in both random and “xed e�ects models. Chapter 15 o�ers material associated
with 2k factorial designs; examples and case studies present the use of screening
designs and special higher fractions of the 2k . Two new and special features are
the presentations of response surface methodology (RSM) and robust parameter
design. These topics are linked in a case study that describes and illustrates a
dual response surface design and analysis featuring the use of process mean and
variance response surfaces.

Computer Software

Case studies, beginning in Chapter 8, feature computer printout and graphical
material generated using both SAS and MINITAB. The inclusion of the computer
re”ects our belief that students should have the experience of reading and inter-
preting computer printout and graphics, even if the software in the text is not that
which is used by the instructor. Exposure to more than one type of software can
broaden the experience base for the student. There is no reason to believe that
the software used in the course will be that which the student will be called upon
to use in practice following graduation. Examples and case studies in the text are
supplemented, where appropriate, by various types of residual plots, quantile plots,
normal probability plots, and other plots. Such plots are particularly prevalent in
Chapters 11 through 15.
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Chapter 1

Introduction to Statistics
and Data Analysis

1.1 Overview: Statistical Inference, Samples, Populations,
and the Role of Probability

Beginning in the 1980s and continuing into the 21st century, an inordinate amount
of attention has been focused onimprovement of quality in American industry.
Much has been said and written about the Japanese •industrial miracle,Ž which
began in the middle of the 20th century. The Japanese were able to succeed where
we and other countries had failed…namely, to create an atmosphere that allows
the production of high-quality products. Much of the success of the Japanese has
been attributed to the use of statistical methods and statistical thinking among
management personnel.

Use of Scienti“c Data

The use of statistical methods in manufacturing, development of food products,
computer software, energy sources, pharmaceuticals, and many other areas involves
the gathering of information or scienti“c data . Of course, the gathering of data
is nothing new. It has been done for well over a thousand years. Data have
been collected, summarized, reported, and stored for perusal. However, there is a
profound distinction between collection of scienti“c information and inferential
statistics . It is the latter that has received rightful attention in recent decades.

The o�spring of inferential statistics has been a large •toolboxŽ of statistical
methods employed by statistical practitioners. These statistical methods are de-
signed to contribute to the process of making scienti“c judgments in the face of
uncertainty and variation . The product density of a particular material from a
manufacturing process will not always be the same. Indeed, if the process involved
is a batch process rather than continuous, there will be not only variation in ma-
terial density among the batches that come o� the line (batch-to-batch variation),
but also within-batch variation. Statistical methods are used to analyze data from
a process such as this one in order to gain more sense of where in the process
changes may be made to improve thequality of the process. In this process, qual-

1
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ity may well be de“ned in relation to closeness to a target density value in harmony
with what portion of the time this closeness criterion is met. An engineer may be
concerned with a speci“c instrument that is used to measure sulfur monoxide in
the air during pollution studies. If the engineer has doubts about the e�ectiveness
of the instrument, there are two sources of variation that must be dealt with.
The “rst is the variation in sulfur monoxide values that are found at the same
locale on the same day. The second is the variation between values observed and
the true amount of sulfur monoxide that is in the air at the time. If either of these
two sources of variation is exceedingly large (according to some standard set by
the engineer), the instrument may need to be replaced. In a biomedical study of a
new drug that reduces hypertension, 85% of patients experienced relief, while it is
generally recognized that the current drug, or •oldŽ drug, brings relief to 80% of pa-
tients that have chronic hypertension. However, the new drug is more expensive to
make and may result in certain side e�ects. Should the new drug be adopted? This
is a problem that is encountered (often with much more complexity) frequently by
pharmaceutical “rms in conjunction with the FDA (Federal Drug Administration).
Again, the consideration of variation needs to be taken into account. The •85%Ž
value is based on a certain number of patients chosen for the study. Perhaps if the
study were repeated with new patients the observed number of •successesŽ would
be 75%! It is the natural variation from study to study that must be taken into
account in the decision process. Clearly this variation is important, since variation
from patient to patient is endemic to the problem.

Variability in Scienti“c Data

In the problems discussed above the statistical methods used involve dealing with
variability, and in each case the variability to be studied is that encountered in
scienti“c data. If the observed product density in the process were always the
same and were always on target, there would be no need for statistical methods.
If the device for measuring sulfur monoxide always gives the same value and the
value is accurate (i.e., it is correct), no statistical analysis is needed. If there
were no patient-to-patient variability inherent in the response to the drug (i.e.,
it either always brings relief or not), life would be simple for scientists in the
pharmaceutical “rms and FDA and no statistician would be needed in the decision
process. Statistics researchers have produced an enormous number of analytical
methods that allow for analysis of data from systems like those described above.
This re”ects the true nature of the science that we call inferential statistics, namely,
using techniques that allow us to go beyond merely reporting data to drawing
conclusions (or inferences) about the scienti“c system. Statisticians make use of
fundamental laws of probability and statistical inference to draw conclusions about
scienti“c systems. Information is gathered in the form of samples , or collections
of observations . The process of sampling is introduced in Chapter 2, and the
discussion continues throughout the entire book.

Samples are collected frompopulations , which are collections of all individ-
uals or individual items of a particular type. At times a population signi“es a
scienti“c system. For example, a manufacturer of computer boards may wish to
eliminate defects. A sampling process may involve collecting information on 50
computer boards sampled randomly from the process. Here, the population is all
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computer boards manufactured by the “rm over a speci“c period of time. If an
improvement is made in the computer board process and a second sample of boards
is collected, any conclusions drawn regarding the e�ectiveness of the change in pro-
cess should extend to the entire population of computer boards produced under
the •improved process.Ž In a drug experiment, a sample of patients is taken and
each is given a speci“c drug to reduce blood pressure. The interest is focused on
drawing conclusions about the population of those who su�er from hypertension.

Often, it is very important to collect scienti“c data in a systematic way, with
planning being high on the agenda. At times the planning is, by necessity, quite
limited. We often focus only on certain properties or characteristics of the items or
objects in the population. Each characteristic has particular engineering or, say,
biological importance to the •customer,Ž the scientist or engineer who seeks to learn
about the population. For example, in one of the illustrations above the quality
of the process had to do with the product density of the output of a process. An
engineer may need to study the e�ect of process conditions, temperature, humidity,
amount of a particular ingredient, and so on. He or she can systematically move
thesefactors to whatever levels are suggested according to whatever prescription
or experimental design is desired. However, a forest scientist who is interested
in a study of factors that in”uence wood density in a certain kind of tree cannot
necessarily design an experiment. This case may require anobservational study
in which data are collected in the “eld but factor levels can not be preselected.
Both of these types of studies lend themselves to methods of statistical inference.
In the former, the quality of the inferences will depend on proper planning of the
experiment. In the latter, the scientist is at the mercy of what can be gathered.
For example, it is sad if an agronomist is interested in studying the e�ect of rainfall
on plant yield and the data are gathered during a drought.

The importance of statistical thinking by managers and the use of statistical
inference by scienti“c personnel is widely acknowledged. Research scientists gain
much from scienti“c data. Data provide understanding of scienti“c phenomena.
Product and process engineers learn a great deal in their o�-line e�orts to improve
the process. They also gain valuable insight by gathering production data (on-
line monitoring) on a regular basis. This allows them to determine necessary
modi“cations in order to keep the process at a desired level of quality.

There are times when a scienti“c practitioner wishes only to gain some sort of
summary of a set of data represented in the sample. In other words, inferential
statistics is not required. Rather, a set of single-number statistics ordescriptive
statistics is helpful. These numbers give a sense of center of the location of
the data, variability in the data, and the general nature of the distribution of
observations in the sample. Though no speci“c statistical methods leading to
statistical inference are incorporated, much can be learned. At times, descriptive
statistics are accompanied by graphics. Modern statistical software packages allow
for computation of means , medians , standard deviations , and other single-
number statistics as well as production of graphs that show a •footprintŽ of the
nature of the sample. De“nitions and illustrations of the single-number statistics
and graphs, including histograms, stem-and-leaf plots, scatter plots, dot plots, and
box plots, will be given in sections that follow.
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The Role of Probability

In this book, Chapters 2 to 6 deal with fundamental notions of probability. A
thorough grounding in these concepts allows the reader to have a better under-
standing of statistical inference. Without some formalism of probability theory,
the student cannot appreciate the true interpretation from data analysis through
modern statistical methods. It is quite natural to study probability prior to study-
ing statistical inference. Elements of probability allow us to quantify the strength
or •con“denceŽ in our conclusions. In this sense, concepts in probability form a
major component that supplements statistical methods and helps us gauge the
strength of the statistical inference. The discipline of probability, then, provides
the transition between descriptive statistics and inferential methods. Elements of
probability allow the conclusion to be put into the language that the science or
engineering practitioners require. An example follows that will enable the reader
to understand the notion of a P-value, which often provides the •bottom lineŽ in
the interpretation of results from the use of statistical methods.

Example 1.1: Suppose that an engineer encounters data from a manufacturing process in which
100 items are sampled and 10 are found to be defective. It is expected and antic-
ipated that occasionally there will be defective items. Obviously these 100 items
represent the sample. However, it has been determined that in the long run, the
company can only tolerate 5% defective in the process. Now, the elements of prob-
ability allow the engineer to determine how conclusive the sample information is
regarding the nature of the process. In this case, thepopulation conceptually
represents all possible items from the process. Suppose we learn thatif the process
is acceptable, that is, if it does produce items no more than 5% of which are de-
fective, there is a probability of 0.0282 of obtaining 10 or more defective items in
a random sample of 100 items from the process. This small probability suggests
that the process does, indeed, have a long-run rate of defective items that exceeds
5%. In other words, under the condition of an acceptable process, the sample in-
formation obtained would rarely occur. However, it did occur! Clearly, though, it
would occur with a much higher probability if the process defective rate exceeded
5% by a signi“cant amount.

From this example it becomes clear that the elements of probability aid in the
translation of sample information into something conclusive or inconclusive about
the scienti“c system. In fact, what was learned likely is alarming information to
the engineer or manager. Statistical methods, which we will actually detail in
Chapter 10, produced aP-value of 0.0282. The result suggests that the process
very likely is not acceptable . The concept of aP-value is dealt with at length
in succeeding chapters. The example that follows provides a second illustration.

Example 1.2: Often the nature of the scienti“c study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 9.40 on page 294 provides
data associated with a study conducted at the Virginia Polytechnic Institute and
State University on the development of a relationship between the roots of trees and
the action of a fungus. Minerals are transferred from the fungus to the trees and
sugars from the trees to the fungus. Two samples of 10 northern red oak seedlings
were planted in a greenhouse, one containing seedlings treated with nitrogen and
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the other containing seedlings with no nitrogen. All other environmental conditions
were held constant. All seedlings contained the fungusPisolithus tinctorus. More
details are supplied in Chapter 9. The stem weights in grams were recorded after
the end of 140 days. The data are given in Table 1.1.

Table 1.1: Data Set for Example 1.2

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 1.1: A dot plot of stem weight data.

In this example there are two samples from twoseparate populations . The
purpose of the experiment is to determine if the use of nitrogen has an in”uence
on the growth of the roots. The study is a comparative study (i.e., we seek to
compare the two populations with regard to a certain important characteristic). It
is instructive to plot the data as shown in the dot plot of Figure 1.1. The � values
represent the •nitrogenŽ data and the× values represent the •no-nitrogenŽ data.

Notice that the general appearance of the data might suggest to the reader
that, on average, the use of nitrogen increases the stem weight. Four nitrogen ob-
servations are considerably larger than any of the no-nitrogen observations. Most
of the no-nitrogen observations appear to be below the center of the data. The
appearance of the data set would seem to indicate that nitrogen is e�ective. But
how can this be quanti“ed? How can all of the apparent visual evidence be summa-
rized in some sense? As in the preceding example, the fundamentals of probability
can be used. The conclusions may be summarized in a probability statement or
P-value. We will not show here the statistical inference that produces the summary
probability. As in Example 1.1, these methods will be discussed in Chapter 10.
The issue revolves around the •probability that data like these could be observedŽ
given that nitrogen has no e�ect, in other words, given that both samples were
generated from the same population. Suppose that this probability is small, say
0.03. That would certainly be strong evidence that the use of nitrogen does indeed
in”uence (apparently increases) average stem weight of the red oak seedlings.
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How Do Probability and Statistical Inference Work Together?

It is important for the reader to understand the clear distinction between the
discipline of probability, a science in its own right, and the discipline of inferen-
tial statistics. As we have already indicated, the use or application of concepts in
probability allows real-life interpretation of the results of statistical inference. As a
result, it can be said that statistical inference makes use of concepts in probability.
One can glean from the two examples above that the sample information is made
available to the analyst and, with the aid of statistical methods and elements of
probability, conclusions are drawn about some feature of the population (the pro-
cess does not appear to be acceptable in Example 1.1, and nitrogen does appear
to in”uence average stem weights in Example 1.2). Thus for a statistical problem,
the sample along with inferential statistics allows us to draw conclu-
sions about the population, with inferential statistics making clear use
of elements of probability . This reasoning is inductive in nature. Now as we
move into Chapter 2 and beyond, the reader will note that, unlike what we do in
our two examples here, we will not focus on solving statistical problems. Many
examples will be given in which no sample is involved. There will be a population
clearly described with all features of the population known. Then questions of im-
portance will focus on the nature of data that might hypothetically be drawn from
the population. Thus, one can say that elements in probability allow us to
draw conclusions about characteristics of hypothetical data taken from
the population, based on known features of the population . This type of
reasoning isdeductive in nature. Figure 1.2 shows the fundamental relationship
between probability and inferential statistics.

Population Sample

Probability

Statistical Inference

Figure 1.2: Fundamental relationship between probability and inferential statistics.

Now, in the grand scheme of things, which is more important, the “eld of
probability or the “eld of statistics? They are both very important and clearly are
complementary. The only certainty concerning the pedagogy of the two disciplines
lies in the fact that if statistics is to be taught at more than merely a •cookbookŽ
level, then the discipline of probability must be taught “rst. This rule stems from
the fact that nothing can be learned about a population from a sample until the
analyst learns the rudiments of uncertainty in that sample. For example, consider
Example 1.1. The question centers around whether or not the population, de“ned
by the process, is no more than 5% defective. In other words, the conjecture is that
on the average 5 out of 100 items are defective. Now, the sample contains 100
items and 10 are defective. Does this support the conjecture or refute it? On the
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surface it would appear to be a refutation of the conjecture because 10 out of 100
seem to be •a bit much.Ž But without elements of probability, how do we know?
Only through the study of material in future chapters will we learn the conditions
under which the process is acceptable (5% defective). The probability of obtaining
10 or more defective items in a sample of 100 is 0.0282.

We have given two examples where the elements of probability provide a sum-
mary that the scientist or engineer can use as evidence on which to build a decision.
The bridge between the data and the conclusion is, of course, based on foundations
of statistical inference, distribution theory, and sampling distributions discussed in
future chapters.

1.2 Sampling Procedures; Collection of Data

In Section 1.1 we discussed very brie”y the notion of sampling and the sampling
process. While sampling appears to be a simple concept, the complexity of the
questions that must be answered about the population or populations necessitates
that the sampling process be very complex at times. While the notion of sampling
is discussed in a technical way in Chapter 8, we shall endeavor here to give some
common-sense notions of sampling. This is a natural transition to a discussion of
the concept of variability.

Simple Random Sampling

The importance of proper sampling revolves around the degree of con“dence with
which the analyst is able to answer the questions being asked. Let us assume that
only a single population exists in the problem. Recall that in Example 1.2 two
populations were involved. Simple random sampling implies that any particular
sample of a speci“edsample sizehas the same chance of being selected as any
other sample of the same size. The termsample size simply means the number of
elements in the sample. Obviously, a table of random numbers can be utilized in
sample selection in many instances. The virtue of simple random sampling is that
it aids in the elimination of the problem of having the sample re”ect a di�erent
(possibly more con“ned) population than the one about which inferences need to be
made. For example, a sample is to be chosen to answer certain questions regarding
political preferences in a certain state in the United States. The sample involves
the choice of, say, 1000 families, and a survey is to be conducted. Now, suppose it
turns out that random sampling is not used. Rather, all or nearly all of the 1000
families chosen live in an urban setting. It is believed that political preferences
in rural areas di�er from those in urban areas. In other words, the sample drawn
actually con“ned the population and thus the inferences need to be con“ned to the
•limited population,Ž and in this case con“ning may be undesirable. If, indeed,
the inferences need to be made about the state as a whole, the sample of size 1000
described here is often referred to as abiased sample .

As we hinted earlier, simple random sampling is not always appropriate. Which
alternative approach is used depends on the complexity of the problem. Often, for
example, the sampling units are not homogeneous and naturally divide themselves
into nonoverlapping groups that are homogeneous. These groups are calledstrata,
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and a procedure calledstrati“ed random sampling involves random selection of a
sample within each stratum. The purpose is to be sure that each of the strata
is neither over- nor underrepresented. For example, suppose a sample survey is
conducted in order to gather preliminary opinions regarding a bond referendum
that is being considered in a certain city. The city is subdivided into several ethnic
groups which represent natural strata. In order not to disregard or overrepresent
any group, separate random samples of families could be chosen from each group.

Experimental Design

The concept of randomness or random assignment plays a huge role in the area of
experimental design , which was introduced very brie”y in Section 1.1 and is an
important staple in almost any area of engineering or experimental science. This
will be discussed at length in Chapters 13 through 15. However, it is instructive to
give a brief presentation here in the context of random sampling. A set of so-called
treatments or treatment combinations becomes the populations to be studied
or compared in some sense. An example is the nitrogen versus no-nitrogen treat-
ments in Example 1.2. Another simple example would be •placeboŽ versus •active
drug,Ž or in a corrosion fatigue study we might have treatment combinations that
involve specimens that are coated or uncoated as well as conditions of low or high
humidity to which the specimens are exposed. In fact, there are four treatment
or factor combinations (i.e., 4 populations), and many scienti“c questions may be
asked and answered through statistical and inferential methods. Consider “rst the
situation in Example 1.2. There are 20 diseased seedlings involved in the exper-
iment. It is easy to see from the data themselves that the seedlings are di�erent
from each other. Within the nitrogen group (or the no-nitrogen group) there is
considerablevariability in the stem weights. This variability is due to what is
generally called theexperimental unit . This is a very important concept in in-
ferential statistics, in fact one whose description will not end in this chapter. The
nature of the variability is very important. If it is too large, stemming from a
condition of excessive nonhomogeneity in experimental units, the variability will
•wash outŽ any detectable di�erence between the two populations. Recall that in
this case that did not occur.

The dot plot in Figure 1.1 and P-value indicated a clear distinction between
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is
to assign the 20 seedlings or experimental unitsrandomly to the two treat-
ments or conditions . In the drug study, we may decide to use a total of 200
available patients, patients that clearly will be di�erent in some sense. They are
the experimental units. However, they all may have the same chronic condition
for which the drug is a potential treatment. Then in a so-called completely ran-
domized design , 100 patients are assigned randomly to the placebo and 100 to
the active drug. Again, it is these experimental units within a group or treatment
that produce the variability in data results (i.e., variability in the measured result),
say blood pressure, or whatever drug e�cacy value is important. In the corrosion
fatigue study, the experimental units are the specimens that are the subjects of
the corrosion.
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Why Assign Experimental Units Randomly?

What is the possible negative impact of not randomly assigning experimental units
to the treatments or treatment combinations? This is seen most clearly in the
case of the drug study. Among the characteristics of the patients that produce
variability in the results are age, gender, and weight. Suppose merely by chance
the placebo group contains a sample of people that are predominately heavier than
those in the treatment group. Perhaps heavier individuals have a tendency to have
a higher blood pressure. This clearly biases the result, and indeed, any result
obtained through the application of statistical inference may have little to do with
the drug and more to do with di�erences in weights among the two samples of
patients.

We should emphasize the attachment of importance to the termvariability .
Excessive variability among experimental units •camou”agesŽ scienti“c “ndings.
In future sections, we attempt to characterize and quantify measures of variability.
In sections that follow, we introduce and discuss speci“c quantities that can be
computed in samples; the quantities give a sense of the nature of the sample with
respect to center of location of the data and variability in the data. A discussion
of several of these single-number measures serves to provide a preview of what
statistical information will be important components of the statistical methods
that are used in future chapters. These measures that help characterize the nature
of the data set fall into the category of descriptive statistics . This material is
a prelude to a brief presentation of pictorial and graphical methods that go even
further in characterization of the data set. The reader should understand that the
statistical methods illustrated here will be used throughout the text. In order to
o�er the reader a clearer picture of what is involved in experimental design studies,
we o�er Example 1.3.

Example 1.3: A corrosion study was made in order to determine whether coating an aluminum
metal with a corrosion retardation substance reduced the amount of corrosion.
The coating is a protectant that is advertised to minimize fatigue damage in this
type of material. Also of interest is the in”uence of humidity on the amount of
corrosion. A corrosion measurement can be expressed in thousands of cycles to
failure. Two levels of coating, no coating and chemical corrosion coating, were
used. In addition, the two relative humidity levels are 20% relative humidity and
80% relative humidity.

The experiment involves four treatment combinations that are listed in the table
that follows. There are eight experimental units used, and they are aluminum
specimens prepared; two are assigned randomly to each of the four treatment
combinations. The data are presented in Table 1.2.

The corrosion data are averages of two specimens. A plot of the averages is
pictured in Figure 1.3. A relatively large value of cycles to failure represents a
small amount of corrosion. As one might expect, an increase in humidity appears
to make the corrosion worse. The use of the chemical corrosion coating procedure
appears to reduce corrosion.

In this experimental design illustration, the engineer has systematically selected
the four treatment combinations. In order to connect this situation to concepts
with which the reader has been exposed to this point, it should be assumed that the



10 Chapter 1 Introduction to Statistics and Data Analysis

Table 1.2: Data for Example 1.3

Average Corrosion in
Coating Humidity Thousands of Cycles to Failure

Uncoated
20% 975
80% 350

Chemical Corrosion
20% 1750
80% 1550
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Figure 1.3: Corrosion results for Example 1.3.

conditions representing the four treatment combinations are four separate popula-
tions and that the two corrosion values observed for each population are important
pieces of information. The importance of the average in capturing and summariz-
ing certain features in the population will be highlighted in Section 1.3. While we
might draw conclusions about the role of humidity and the impact of coating the
specimens from the “gure, we cannot truly evaluate the results from an analyti-
cal point of view without taking into account the variability around the average.
Again, as we indicated earlier, if the two corrosion values for each treatment com-
bination are close together, the picture in Figure 1.3 may be an accurate depiction.
But if each corrosion value in the “gure is an average of two values that are widely
dispersed, then this variability may, indeed, truly •wash awayŽ any information
that appears to come through when one observes averages only. The foregoing
example illustrates these concepts:

(1) random assignment of treatment combinations (coating, humidity) to experi-
mental units (specimens)

(2) the use of sample averages (average corrosion values) in summarizing sample
information

(3) the need for consideration of measures of variability in the analysis of any
sample or sets of samples
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This example suggests the need for what follows in Sections 1.3 and 1.4, namely,
descriptive statistics that indicate measures of center of location in a set of data,
and those that measure variability.

1.3 Measures of Location: The Sample Mean and Median

Measures of location are designed to provide the analyst with some quantitative
values of where the center, or some other location, of data is located. In Example
1.2, it appears as if the center of the nitrogen sample clearly exceeds that of the
no-nitrogen sample. One obvious and very useful measure is thesample mean .
The mean is simply a numerical average.

De“nition 1.1: Suppose that the observations in a sample arex1, x2, . . . , xn . The sample mean ,
denoted by x̄, is

x̄ =
n�

i =1

xi

n
=

x1 + x2 + · · · + xn

n
.

There are other measures of central tendency that are discussed in detail in
future chapters. One important measure is thesample median . The purpose of
the sample median is to re”ect the central tendency of the sample in such a way
that it is unin”uenced by extreme values or outliers.

De“nition 1.2: Given that the observations in a sample arex1, x2, . . . , xn , arranged in increasing
order of magnitude, the sample median is

�x =

�
x(n +1) / 2, if n is odd,
1
2 (xn/ 2 + xn/ 2+1 ), if n is even.

As an example, suppose the data set is the following: 1.7, 2.2, 3.9, 3.11, and
14.7. The sample mean and median are, respectively,

x̄ = 5 .12, �x = 3 .9.

Clearly, the mean is in”uenced considerably by the presence of the extreme obser-
vation, 14.7, whereas the median places emphasis on the true •centerŽ of the data
set. In the case of the two-sample data set of Example 1.2, the two measures of
central tendency for the individual samples are

x̄ (no nitrogen) = 0 .399 gram,

�x (no nitrogen) =
0.38 + 0.42

2
= 0 .400 gram,

x̄ (nitrogen) = 0 .565 gram,

�x (nitrogen) =
0.49 + 0.52

2
= 0 .505 gram.

Clearly there is a di�erence in concept between the mean and median. It may
be of interest to the reader with an engineering background that the sample mean
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is the centroid of the data in a sample. In a sense, it is the point at which a
fulcrum can be placed to balance a system of •weightsŽ which are the locations of
the individual data. This is shown in Figure 1.4 with regard to the with-nitrogen
sample.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

x � 0.565

Figure 1.4: Sample mean as a centroid of the with-nitrogen stem weight.

In future chapters, the basis for the computation of x̄ is that of an estimate
of the population mean . As we indicated earlier, the purpose of statistical infer-
ence is to draw conclusions about population characteristics orparameters and
estimation is a very important feature of statistical inference.

The median and mean can be quite di�erent from each other. Note, however,
that in the case of the stem weight data the sample mean value for no-nitrogen is
quite similar to the median value.

Other Measures of Locations

There are several other methods of quantifying the center of location of the data
in the sample. We will not deal with them at this point. For the most part,
alternatives to the sample mean are designed to produce values that represent
compromises between the mean and the median. Rarely do we make use of these
other measures. However, it is instructive to discuss one class of estimators, namely
the class of trimmed means . A trimmed mean is computed by •trimming awayŽ
a certain percent of both the largest and the smallest set of values. For example,
the 10% trimmed mean is found by eliminating the largest 10% and smallest 10%
and computing the average of the remaining values. For example, in the case of
the stem weight data, we would eliminate the largest and smallest since the sample
size is 10 for each sample. So for the without-nitrogen group the 10% trimmed
mean is given by

x̄tr (10) =
0.32 + 0.37 + 0.47 + 0.43 + 0.36 + 0.42 + 0.38 + 0.43

8
= 0 .39750,

and for the 10% trimmed mean for the with-nitrogen group we have

x̄tr (10) =
0.43 + 0.47 + 0.49 + 0.52 + 0.75 + 0.79 + 0.62 + 0.46

8
= 0 .56625.

Note that in this case, as expected, the trimmed means are close to both the mean
and the median for the individual samples. The trimmed mean is, of course, more
insensitive to outliers than the sample mean but not as insensitive as the median.
On the other hand, the trimmed mean approach makes use of more information
than the sample median. Note that the sample median is, indeed, a special case of
the trimmed mean in which all of the sample data are eliminated apart from the
middle one or two observations.
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Exercises

1.1 The following measurements were recorded for
the drying time, in hours, of a certain brand of latex
paint.

3.4 2.5 4.8 2.9 3.6
2.8 3.3 5.6 3.7 2.8
4.4 4.0 5.2 3.0 4.8

Assume that the measurements are a simple random
sample.
(a) What is the sample size for the above sample?
(b) Calculate the sample mean for these data.
(c) Calculate the sample median.
(d) Plot the data by way of a dot plot.
(e) Compute the 20% trimmed mean for the above

data set.
(f) Is the sample mean for these data more or less de-

scriptive as a center of location than the trimmed
mean?

1.2 According to the journal Chemical Engineering,
an important property of a “ber is its water ab-
sorbency. A random sample of 20 pieces of cotton “ber
was taken and the absorbency on each piece was mea-
sured. The following are the absorbency values:

18.71 21.41 20.72 21.81 19.29 22.43 20.17
23.71 19.44 20.50 18.92 20.33 23.00 22.85
19.25 21.77 22.11 19.77 18.04 21.12

(a) Calculate the sample mean and median for the
above sample values.

(b) Compute the 10% trimmed mean.
(c) Do a dot plot of the absorbency data.
(d) Using only the values of the mean, median, and

trimmed mean, do you have evidence of outliers in
the data?

1.3 A certain polymer is used for evacuation systems
for aircraft. It is important that the polymer be re-
sistant to the aging process. Twenty specimens of the
polymer were used in an experiment. Ten were as-
signed randomly to be exposed to an accelerated batch
aging process that involved exposure to high tempera-
tures for 10 days. Measurements of tensile strength of
the specimens were made, and the following data were
recorded on tensile strength in psi:

No aging: 227 222 218 217 225
218 216 229 228 221

Aging: 219 214 215 211 209
218 203 204 201 205

(a) Do a dot plot of the data.
(b) From your plot, does it appear as if the aging pro-

cess has had an e�ect on the tensile strength of this

polymer? Explain.
(c) Calculate the sample mean tensile strength of the

two samples.
(d) Calculate the median for both. Discuss the simi-

larity or lack of similarity between the mean and
median of each group.

1.4 In a study conducted by the Department of Me-
chanical Engineering at Virginia Tech, the steel rods
supplied by two di�erent companies were compared.
Ten sample springs were made out of the steel rods
supplied by each company, and a measure of ”exibility
was recorded for each. The data are as follows:

Company A: 9.3 8.8 6.8 8.7 8.5
6.7 8.0 6.5 9.2 7.0

Company B: 11.0 9.8 9.9 10.2 10.1
9.7 11.0 11.1 10.2 9.6

(a) Calculate the sample mean and median for the data
for the two companies.

(b) Plot the data for the two companies on the same
line and give your impression regarding any appar-
ent di�erences between the two companies.

1.5 Twenty adult males between the ages of 30 and
40 participated in a study to evaluate the e�ect of a
speci“c health regimen involving diet and exercise on
the blood cholesterol. Ten were randomly selected to
be a control group, and ten others were assigned to
take part in the regimen as the treatment group for a
period of 6 months. The following data show the re-
duction in cholesterol experienced for the time period
for the 20 subjects:

Control group: 7 3 Š4 14 2
5 22 Š7 9 5

Treatment group: Š6 5 9 4 4
12 37 5 3 3

(a) Do a dot plot of the data for both groups on the
same graph.

(b) Compute the mean, median, and 10% trimmed
mean for both groups.

(c) Explain why the di�erence in means suggests one
conclusion about the e�ect of the regimen, while
the di�erence in medians or trimmed means sug-
gests a di�erent conclusion.

1.6 The tensile strength of silicone rubber is thought
to be a function of curing temperature. A study was
carried out in which samples of 12 specimens of the rub-
ber were prepared using curing temperatures of 20� C
and 45� C. The data below show the tensile strength
values in megapascals.
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20� C: 2.07 2.14 2.22 2.03 2.21 2.03
2.05 2.18 2.09 2.14 2.11 2.02

45� C: 2.52 2.15 2.49 2.03 2.37 2.05
1.99 2.42 2.08 2.42 2.29 2.01

(a) Show a dot plot of the data with both low and high
temperature tensile strength values.

(b) Compute sample mean tensile strength for both
samples.

(c) Does it appear as if curing temperature has an
in”uence on tensile strength, based on the plot?
Comment further.

(d) Does anything else appear to be in”uenced by an
increase in curing temperature? Explain.

1.4 Measures of Variability

Sample variability plays an important role in data analysis. Process and product
variability is a fact of life in engineering and scienti“c systems: The control or
reduction of process variability is often a source of major di�culty. More and
more process engineers and managers are learning that product quality and, as
a result, pro“ts derived from manufactured products are very much a function
of process variability . As a result, much of Chapters 9 through 15 deals with
data analysis and modeling procedures in which sample variability plays a major
role. Even in small data analysis problems, the success of a particular statistical
method may depend on the magnitude of the variability among the observations in
the sample. Measures of location in a sample do not provide a proper summary of
the nature of a data set. For instance, in Example 1.2 we cannot conclude that the
use of nitrogen enhances growth without taking sample variability into account.

While the details of the analysis of this type of data set are deferred to Chap-
ter 9, it should be clear from Figure 1.1 that variability among the no-nitrogen
observations and variability among the nitrogen observations are certainly of some
consequence. In fact, it appears that the variability within the nitrogen sample
is larger than that of the no-nitrogen sample. Perhaps there is something about
the inclusion of nitrogen that not only increases the stem height (x̄ of 0.565 gram
compared to anx̄ of 0.399 gram for the no-nitrogen sample) but also increases the
variability in stem height (i.e., renders the stem height more inconsistent).

As another example, contrast the two data sets below. Each contains two
samples and the di�erence in the means is roughly the same for the two samples, but
data set B seems to provide a much sharper contrast between the two populations
from which the samples were taken. If the purpose of such an experiment is to
detect di�erences between the two populations, the task is accomplished in the case
of data set B. However, in data set A the large variability within the two samples
creates di�culty. In fact, it is not clear that there is a distinction betweenthe two
populations.

Data set A: X  X  X  X  X  X    0  X  X  0  0  X  X  X  0    0  0  0  0  0  0  0

Data set B: X  X  X  X  X  X  X  X  X  X  X      0  0  0  0  0  0  0  0  0  0  0

xX x0

xX x0
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Sample Range and Sample Standard Deviation

Just as there are many measures of central tendency or location, there are many
measures of spread or variability. Perhaps the simplest one is thesample range
X max Š X min . The range can be very useful and is discussed at length in Chapter
17 on statistical quality control . The sample measure of spread that is used most
often is the sample standard deviation . We again let x1, x2, . . . , xn denote
sample values.

De“nition 1.3: The sample variance , denoted by s2, is given by

s2 =
n�

i =1

(xi Š x̄)2

n Š 1
.

The sample standard deviation , denoted by s, is the positive square root of
s2, that is,

s =
�

s2.

It should be clear to the reader that the sample standard deviation is, in fact,
a measure of variability. Large variability in a data set produces relatively large
values of (x Š x̄)2 and thus a large sample variance. The quantityn Š 1 is often
called the degrees of freedom associated with the variance estimate. In this
simple example, the degrees of freedom depict the number of independent pieces
of information available for computing variability. For example, suppose that we
wish to compute the sample variance and standard deviation of the data set (5,
17, 6, 4). The sample average is ¯x = 8. The computation of the variance involves

(5 Š 8)2 + (17 Š 8)2 + (6 Š 8)2 + (4 Š 8)2 = ( Š3)2 + 9 2 + ( Š2)2 + ( Š4)2.

The quantities inside parentheses sum to zero. In general,
n�

i =1
(xi Š x̄) = 0 (see

Exercise 1.16 on page 31). Then the computation of a sample variance does not
involve n independent squared deviations from the mean x̄. In fact, since the
last value of x Š x̄ is determined by the initial n Š 1 of them, we say that these
are n Š 1 •pieces of informationŽ that produces2. Thus, there are n Š 1 degrees
of freedom rather than n degrees of freedom for computing a sample variance.

Example 1.4: In an example discussed extensively in Chapter 10, an engineer is interested in
testing the •biasŽ in a pH meter. Data are collected on the meter by measuring
the pH of a neutral substance (pH = 7.0). A sample of size 10 is taken, with results
given by

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08.

The sample mean ¯x is given by

x̄ =
7.07 + 7.00 + 7.10 + · · · + 7 .08

10
= 7 .0250.
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The sample variances2 is given by

s2 =
1
9

[(7.07Š 7.025)2 + (7 .00Š 7.025)2 + (7 .10Š 7.025)2

+ · · · + (7 .08Š 7.025)2] = 0 .001939.

As a result, the sample standard deviation is given by

s =
�

0.001939 = 0.044.

So the sample standard deviation is 0.0440 withn Š 1 = 9 degrees of freedom.

Units for Standard Deviation and Variance

It should be apparent from De“nition 1.3 that the variance is a measure of the
average squared deviation from the mean ¯x. We use the term average squared
deviation even though the de“nition makes use of a division by degrees of freedom
n Š 1 rather than n. Of course, if n is large, the di�erence in the denominator
is inconsequential. As a result, the sample variance possesses units that are the
square of the units in the observed data whereas the sample standard deviation
is found in linear units. As an example, consider the data of Example 1.2. The
stem weights are measured in grams. As a result, the sample standard deviations
are in grams and the variances are measured in grams2. In fact, the individual
standard deviations are 0.0728 gram for the no-nitrogen case and 0.1867 gram for
the nitrogen group. Note that the standard deviation does indicate considerably
larger variability in the nitrogen sample. This condition was displayed in Figure
1.1.

Which Variability Measure Is More Important?

As we indicated earlier, the sample range has applications in the area of statistical
quality control. It may appear to the reader that the use of both the sample
variance and the sample standard deviation is redundant. Both measures re”ect the
same concept in measuring variability, but the sample standard deviation measures
variability in linear units whereas the sample variance is measured in squared
units. Both play huge roles in the use of statistical methods. Much of what is
accomplished in the context of statistical inference involves drawing conclusions
about characteristics of populations. Among these characteristics are constants
which are called population parameters . Two important parameters are the
population mean and the population variance . The sample variance plays an
explicit role in the statistical methods used to draw inferences about the population
variance. The sample standard deviation has an important role along with the
sample mean in inferences that are made about the population mean. In general,
the variance is considered more in inferential theory, while the standard deviation
is used more in applications.



1.5 Discrete and Continuous Data 17

Exercises

1.7 Consider the drying time data for Exercise 1.1
on page 13. Compute the sample variance and sample
standard deviation.

1.8 Compute the sample variance and standard devi-
ation for the water absorbency data of Exercise 1.2 on
page 13.

1.9 Exercise 1.3 on page 13 showed tensile strength
data for two samples, one in which specimens were ex-
posed to an aging process and one in which there was
no aging of the specimens.
(a) Calculate the sample variance as well as standard

deviation in tensile strength for both samples.
(b) Does there appear to be any evidence that aging

a�ects the variability in tensile strength? (See also
the plot for Exercise 1.3 on page 13.)

1.10 For the data of Exercise 1.4 on page 13, com-
pute both the mean and the variance in •”exibilityŽ
for both company A and company B. Does there ap-
pear to be a di�erence in ”exibility between company
A and company B?

1.11 Consider the data in Exercise 1.5 on page 13.
Compute the sample variance and the sample standard
deviation for both control and treatment groups.

1.12 For Exercise 1.6 on page 13, compute the sample
standard deviation in tensile strength for the samples
separately for the two temperatures. Does it appear as
if an increase in temperature in”uences the variability
in tensile strength? Explain.

1.5 Discrete and Continuous Data

Statistical inference through the analysis of observational studies or designed ex-
periments is used in many scienti“c areas. The data gathered may bediscrete
or continuous , depending on the area of application. For example, a chemical
engineer may be interested in conducting an experiment that will lead to condi-
tions where yield is maximized. Here, of course, the yield may be in percent or
grams/pound, measured on a continuum. On the other hand, a toxicologist con-
ducting a combination drug experiment may encounter data that are binary in
nature (i.e., the patient either responds or does not).

Great distinctions are made between discrete and continuous data in the prob-
ability theory that allow us to draw statistical inferences. Often applications of
statistical inference are found when the data arecount data. For example, an en-
gineer may be interested in studying the number of radioactive particles passing
through a counter in, say, 1 millisecond. Personnel responsible for the e�ciency
of a port facility may be interested in the properties of the number of oil tankers
arriving each day at a certain port city. In Chapter 5, several distinct scenarios,
leading to di�erent ways of handling data, are discussed for situations with count
data.

Special attention even at this early stage of the textbook should be paid to some
details associated with binary data. Applications requiring statistical analysis of
binary data are voluminous. Often the measure that is used in the analysis is
the sample proportion. Obviously the binary situation involves two categories.
If there are n units involved in the data and x is de“ned as the number that
fall into category 1, then n Š x fall into category 2. Thus, x/n is the sample
proportion in category 1, and 1Š x/n is the sample proportion in category 2. In
the biomedical application, 50 patients may represent the sample units, and if 20
out of 50 experienced an improvement in a stomach ailment (common to all 50)
after all were given the drug, then 20

50 = 0 .4 is the sample proportion for which
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the drug was a success and 1Š 0.4 = 0.6 is the sample proportion for which the
drug was not successful. Actually the basic numerical measurement for binary
data is generally denoted by either 0 or 1. For example, in our medical example,
a successful result is denoted by a 1 and a nonsuccess a 0. As a result, the sample
proportion is actually a sample mean of the ones and zeros. For the successful
category,

x1 + x2 + · · · + x50

50
=

1 + 1 + 0 + · · · + 0 + 1
50

=
20
50

= 0 .4.

What Kinds of Problems Are Solved in Binary Data Situations?

The kinds of problems facing scientists and engineers dealing in binary data are
not a great deal unlike those seen where continuous measurements are of interest.
However, di�erent techniques are used since the statistical properties of sample
proportions are quite di�erent from those of the sample means that result from
averages taken from continuous populations. Consider the example data in Ex-
ercise 1.6 on page 13. The statistical problem underlying this illustration focuses
on whether an intervention, say, an increase in curing temperature, will alter the
population mean tensile strength associated with the silicone rubber process. On
the other hand, in a quality control area, suppose an automobile tire manufacturer
reports that a shipment of 5000 tires selected randomly from the process results
in 100 of them showing blemishes. Here the sample proportion is100

5000 = 0 .02.
Following a change in the process designed to reduce blemishes, a second sample of
5000 is taken and 90 tires are blemished. The sample proportion has been reduced
to 90

5000 = 0 .018. The question arises, •Is the decrease in the sample proportion
from 0.02 to 0.018 substantial enough to suggest a real improvement in the pop-
ulation proportion?Ž Both of these illustrations require the use of the statistical
properties of sample averages„one from samples from a continuous population,
and the other from samples from a discrete (binary) population. In both cases,
the sample mean is anestimate of a population parameter, a population mean
in the “rst illustration (i.e., mean tensile strength), and a population proportion
in the second case (i.e., proportion of blemished tires in the population). So here
we have sample estimates used to draw scienti“c conclusions regarding population
parameters. As we indicated in Section 1.3, this is the general theme in many
practical problems using statistical inference.

1.6 Statistical Modeling, Scienti“c Inspection, and Graphical
Diagnostics

Often the end result of a statistical analysis is the estimation of parameters of a
postulated model . This is natural for scientists and engineers since they often
deal in modeling. A statistical model is not deterministic but, rather, must entail
some probabilistic aspects. A model form is often the foundation ofassumptions
that are made by the analyst. For example, in Example 1.2 the scientist may wish
to draw some level of distinction between the nitrogen and no-nitrogen populations
through the sample information. The analysis may require a certain model for
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the data, for example, that the two samples come fromnormal or Gaussian
distributions . See Chapter 6 for a discussion of the normal distribution.

Obviously, the user of statistical methods cannot generate su�cient informa-
tion or experimental data to characterize the population totally. But sets of data
are often used to learn about certain properties of the population. Scientists and
engineers are accustomed to dealing with data sets. The importance of character-
izing or summarizing the nature of collections of data should be obvious. Often a
summary of a collection of data via a graphical display can provide insight regard-
ing the system from which the data were taken. For instance, in Sections 1.1 and
1.3, we have shown dot plots.

In this section, the role of sampling and the display of data for enhancement of
statistical inference is explored in detail. We merely introduce some simple but
often e�ective displays that complement the study of statistical populations.

Scatter Plot

At times the model postulated may take on a somewhat complicated form. Con-
sider, for example, a textile manufacturer who designs an experiment where cloth
specimen that contain various percentages of cotton are produced. Consider the
data in Table 1.3.

Table 1.3: Tensile Strength

Cotton Percentage Tensile Strength

15 7, 7, 9, 8, 10
20 19, 20, 21, 20, 22
25 21, 21, 17, 19, 20
30 8, 7, 8, 9, 10

Five cloth specimens are manufactured for each of the four cotton percentages.
In this case, both the model for the experiment and the type of analysis used
should take into account the goal of the experiment and important input from
the textile scientist. Some simple graphics can shed important light on the clear
distinction between the samples. See Figure 1.5; the sample means and variability
are depicted nicely in the scatter plot. One possible goal of this experiment is
simply to determine which cotton percentages are truly distinct from the others.
In other words, as in the case of the nitrogen/no-nitrogen data, for which cotton
percentages are there clear distinctions between the populations or, more speci“-
cally, between the population means? In this case, perhaps a reasonable model is
that each sample comes from a normal distribution. Here the goal is very much
like that of the nitrogen/no-nitrogen data except that more samples are involved.
The formalism of the analysis involves notions of hypothesis testing discussed in
Chapter 10. Incidentally, this formality is perhaps not necessary in light of the
diagnostic plot. But does this describe the real goal of the experiment and hence
the proper approach to data analysis? It is likely that the scientist anticipates
the existence of amaximum population mean tensile strengthin the range of cot-
ton concentration in the experiment. Here the analysis of the data should revolve
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around a di�erent type of model, one that postulates a type of structure relating
the population mean tensile strength to the cotton concentration. In other words,
a model may be written

µt,c = � 0 + � 1C + � 2C2,

where µt,c is the population mean tensile strength, which varies with the amount
of cotton in the product C. The implication of this model is that for a “xed cotton
level, there is a population of tensile strength measurements and the population
mean is µt,c . This type of model, called a regression model , is discussed in
Chapters 11 and 12. The functional form is chosen by the scientist. At times
the data analysis may suggest that the model be changed. Then the data analyst
•entertainsŽ a model that may be altered after some analysis is done. The use
of an empirical model is accompanied byestimation theory , where � 0, � 1, and
� 2 are estimated by the data. Further, statistical inference can then be used to
determine model adequacy.
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Figure 1.5: Scatter plot of tensile strength and cotton percentages.

Two points become evident from the two data illustrations here: (1) The type
of model used to describe the data often depends on the goal of the experiment;
and (2) the structure of the model should take advantage of nonstatistical scienti“c
input. A selection of a model represents afundamental assumption upon which
the resulting statistical inference is based. It will become apparent throughout the
book how important graphics can be. Often, plots can illustrate information that
allows the results of the formal statistical inference to be better communicated to
the scientist or engineer. At times, plots orexploratory data analysis can teach
the analyst something not retrieved from the formal analysis. Almost any formal
analysis requires assumptions that evolve from the model of the data. Graphics can
nicely highlight violation of assumptions that would otherwise go unnoticed.
Throughout the book, graphics are used extensively to supplement formal data
analysis. The following sections reveal some graphical tools that are useful in
exploratory or descriptive data analysis.
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Stem-and-Leaf Plot

Statistical data, generated in large masses, can be very useful for studying the
behavior of the distribution if presented in a combined tabular and graphic display
called a stem-and-leaf plot .

To illustrate the construction of a stem-and-leaf plot, consider the data of Table
1.4, which speci“es the •lifeŽ of 40 similar car batteries recorded to the nearest tenth
of a year. The batteries are guaranteed to last 3 years. First, split each observation
into two parts consisting of a stem and a leaf such that the stem represents the
digit preceding the decimal and the leaf corresponds to the decimal part of the
number. In other words, for the number 3.7, the digit 3 is designated the stem and
the digit 7 is the leaf. The four stems 1, 2, 3, and 4 for our data are listed vertically
on the left side in Table 1.5; the leaves are recorded on the right side opposite the
appropriate stem value. Thus, the leaf 6 of the number 1.6 is recorded opposite
the stem 1; the leaf 5 of the number 2.5 is recorded opposite the stem 2; and so
forth. The number of leaves recorded opposite each stem is summarized under the
frequency column.

Table 1.4: Car Battery Life

2.2 4.1 3.5 4.5 3.2 3.7 3.0 2.6
3.4 1.6 3.1 3.3 3.8 3.1 4.7 3.7
2.5 4.3 3.4 3.6 2.9 3.3 3.9 3.1
3.3 3.1 3.7 4.4 3.2 4.1 1.9 3.4
4.7 3.8 3.2 2.6 3.9 3.0 4.2 3.5

Table 1.5: Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1
2
3
4

69
25669
0011112223334445567778899
11234577

2
5

25
8

The stem-and-leaf plot of Table 1.5 contains only four stems and consequently
does not provide an adequate picture of the distribution. To remedy this problem,
we need to increase the number of stems in our plot. One simple way to accomplish
this is to write each stem value twice and then record the leaves 0, 1, 2, 3, and 4
opposite the appropriate stem value where it appears for the “rst time, and the
leaves 5, 6, 7, 8, and 9 opposite this same stem value where it appears for the second
time. This modi“ed double-stem-and-leaf plot is illustrated in Table 1.6, where the
stems corresponding to leaves 0 through 4 have been coded by the symbol� and
the stems corresponding to leaves 5 through 9 by the symbol·.

In any given problem, we must decide on the appropriate stem values. This
decision is made somewhat arbitrarily, although we are guided by the size of our
sample. Usually, we choose between 5 and 20 stems. The smaller the number of
data available, the smaller is our choice for the number of stems. For example, if
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the data consist of numbers from 1 to 21 representing the number of people in a
cafeteria line on 40 randomly selected workdays and we choose a double-stem-and-
leaf plot, the stems will be 0� , 0·, 1� , 1·, and 2� so that the smallest observation
1 has stem 0� and leaf 1, the number 18 has stem 1· and leaf 8, and the largest
observation 21 has stem 2� and leaf 1. On the other hand, if the data consist of
numbers from $18,800 to $19,600 representing the best possible deals on 100 new
automobiles from a certain dealership and we choose a single-stem-and-leaf plot,
the stems will be 188, 189, 190,. . . , 196 and the leaves will now each contain two
digits. A car that sold for $19,385 would have a stem value of 193 and the two-digit
leaf 85. Multiple-digit leaves belonging to the same stem are usually separated by
commas in the stem-and-leaf plot. Decimal points in the data are generally ignored
when all the digits to the right of the decimal represent the leaf. Such was the
case in Tables 1.5 and 1.6. However, if the data consist of numbers ranging from
21.8 to 74.9, we might choose the digits 2, 3, 4, 5, 6, and 7 as our stems so that a
number such as 48.3 would have a stem value of 4 and a leaf of 8.3.

Table 1.6: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1·
2�
2·
3�
3·
4�
4·

69
2
5669
001111222333444
5567778899
11234
577

2
1
4

15
10
5
3

The stem-and-leaf plot represents an e�ective way to summarize data. Another
way is through the use of thefrequency distribution , where the data, grouped
into di�erent classes or intervals, can be constructed by counting the leaves be-
longing to each stem and noting that each stem de“nes a class interval. In Table
1.5, the stem 1 with 2 leaves de“nes the interval 1.0…1.9 containing 2 observations;
the stem 2 with 5 leaves de“nes the interval 2.0…2.9 containing 5 observations; the
stem 3 with 25 leaves de“nes the interval 3.0…3.9 with 25 observations; and the
stem 4 with 8 leaves de“nes the interval 4.0…4.9 containing 8 observations. For the
double-stem-and-leaf plot of Table 1.6, the stems de“ne the seven class intervals
1.5…1.9, 2.0…2.4, 2.5…2.9, 3.0…3.4, 3.5…3.9, 4.0…4.4, and 4.5…4.9 with frequencies 2,
1, 4, 15, 10, 5, and 3, respectively.

Histogram

Dividing each class frequency by the total number of observations, we obtain the
proportion of the set of observations in each of the classes. A table listing relative
frequencies is called arelative frequency distribution . The relative frequency
distribution for the data of Table 1.4, showing the midpoint of each class interval,
is given in Table 1.7.

The information provided by a relative frequency distribution in tabular form is
easier to grasp if presented graphically. Using the midpoint of each interval and the



1.6 Statistical Modeling, Scienti“c Inspection, and Graphical Diagnostics 23

Table 1.7: Relative Frequency Distribution of Battery Life

Class Class Frequency, Relative
Interval Midpoint f Frequency
1.5…1.9 1.7 2 0.050
2.0…2.4 2.2 1 0.025
2.5…2.9 2.7 4 0.100
3.0…3.4 3.2 15 0.375
3.5…3.9 3.7 10 0.250
4.0…4.4 4.2 5 0.125
4.5…4.9 4.7 3 0.075

0.375

0.250

0.125

1.7 2.2 2.7 3.2 3.7 4.2 4.7
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Figure 1.6: Relative frequency histogram.

corresponding relative frequency, we construct arelative frequency histogram
(Figure 1.6).

Many continuous frequency distributions can be represented graphically by the
characteristic bell-shaped curve of Figure 1.7. Graphical tools such as what we see
in Figures 1.6 and 1.7 aid in the characterization of the nature of the population. In
Chapters 5 and 6 we discuss a property of the population called itsdistribution .
While a more rigorous de“nition of a distribution or probability distribution
will be given later in the text, at this point one can view it as what would be seen
in Figure 1.7 in the limit as the size of the sample becomes larger.

A distribution is said to be symmetric if it can be folded along a vertical axis
so that the two sides coincide. A distribution that lacks symmetry with respect to
a vertical axis is said to beskewed . The distribution illustrated in Figure 1.8(a)
is said to be skewed to the right since it has a long right tail and a much shorter
left tail. In Figure 1.8(b) we see that the distribution is symmetric, while in Figure
1.8(c) it is skewed to the left.

If we rotate a stem-and-leaf plot counterclockwise through an angle of 90� ,
we observe that the resulting columns of leaves form a picture that is similar
to a histogram. Consequently, if our primary purpose in looking at the data is to
determine the general shape or form of the distribution, it will seldom be necessary
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0

f (x)

Battery Life (years)
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Figure 1.7: Estimating frequency distribution.

(a) (b) (c)

Figure 1.8: Skewness of data.

to construct a relative frequency histogram.

Box-and-Whisker Plot or Box Plot

Another display that is helpful for re”ecting properties of a sample is the box-
and-whisker plot . This plot encloses theinterquartile range of the data in a box
that has the median displayed within. The interquartile range has as its extremes
the 75th percentile (upper quartile) and the 25th percentile (lower quartile). In
addition to the box, •whiskersŽ extend, showing extreme observations in the sam-
ple. For reasonably large samples, the display shows center of location, variability,
and the degree of asymmetry.

In addition, a variation called a box plot can provide the viewer with infor-
mation regarding which observations may beoutliers . Outliers are observations
that are considered to be unusually far from the bulk of the data. There are many
statistical tests that are designed to detect outliers. Technically, one may view
an outlier as being an observation that represents a •rare eventŽ (there is a small
probability of obtaining a value that far from the bulk of the data). The concept
of outliers resurfaces in Chapter 12 in the context of regression analysis.
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The visual information in the box-and-whisker plot or box plot is not intended
to be a formal test for outliers. Rather, it is viewed as a diagnostic tool. While the
determination of which observations are outliers varies with the type of software
that is used, one common procedure is to use amultiple of the interquartile
range . For example, if the distance from the box exceeds 1.5 times the interquartile
range (in either direction), the observation may be labeled an outlier.

Example 1.5: Nicotine content was measured in a random sample of 40 cigarettes. The data are
displayed in Table 1.8.

Table 1.8: Nicotine Data for Example 1.5

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97
0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11
1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85
1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93
1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69

1.0 1.5 2.0 2.5

Nicotine

Figure 1.9: Box-and-whisker plot for Example 1.5.

Figure 1.9 shows the box-and-whisker plot of the data, depicting the observa-
tions 0.72 and 0.85 as mild outliers in the lower tail, whereas the observation 2.55
is a mild outlier in the upper tail. In this example, the interquartile range is 0.365,
and 1.5 times the interquartile range is 0.5475. Figure 1.10, on the other hand,
provides a stem-and-leaf plot.

Example 1.6: Consider the data in Table 1.9, consisting of 30 samples measuring the thickness of
paint can •earsŽ (see the work by Hogg and Ledolter, 1992, in the Bibliography).
Figure 1.11 depicts a box-and-whisker plot for this asymmetric set of data. Notice
that the left block is considerably larger than the block on the right. The median
is 35. The lower quartile is 31, while the upper quartile is 36. Notice also that the
extreme observation on the right is farther away from the box than the extreme
observation on the left. There are no outliers in this data set.
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The decimal point is 1 digit(s) to the left of the |
7 | 2
8 | 5
9 |

10 | 9
11 |
12 | 4
13 | 7
14 | 07
15 | 18
16 | 3447899
17 | 045599
18 | 2568
19 | 0237
20 | 389
21 | 17
22 | 8
23 | 17
24 | 6
25 | 5

Figure 1.10: Stem-and-leaf plot for the nicotine data.

Table 1.9: Data for Example 1.6
Sample Measurements Sample Measurements

1 29 36 39 34 34 16 35 30 35 29 37
2 29 29 28 32 31 17 40 31 38 35 31
3 34 34 39 38 37 18 35 36 30 33 32
4 35 37 33 38 41 19 35 34 35 30 36
5 30 29 31 38 29 20 35 35 31 38 36
6 34 31 37 39 36 21 32 36 36 32 36
7 30 35 33 40 36 22 36 37 32 34 34
8 28 28 31 34 30 23 29 34 33 37 35
9 32 36 38 38 35 24 36 36 35 37 37
10 35 30 37 35 31 25 36 30 35 33 31
11 35 30 35 38 35 26 35 30 29 38 35
12 38 34 35 35 31 27 35 36 30 34 36
13 34 35 33 30 34 28 35 30 36 29 35
14 40 35 34 33 35 29 38 36 35 31 31
15 34 35 38 35 30 30 30 34 40 28 30

There are additional ways that box-and-whisker plots and other graphical dis-
plays can aid the analyst. Multiple samples can be compared graphically. Plots of
data can suggest relationships between variables. Graphs can aid in the detection
of anomalies or outlying observations in samples.

There are other types of graphical tools and plots that are used. These are
discussed in Chapter 8 after we introduce additional theoretical details.
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28 30 32 34 36 38 40

Paint

Figure 1.11: Box-and-whisker plot for thickness of paint can •ears.Ž

Other Distinguishing Features of a Sample

There are features of the distribution or sample other than measures of center
of location and variability that further de“ne its nature. For example, while the
median divides the data (or distribution) into two parts, there are other measures
that divide parts or pieces of the distribution that can be very useful. Separation
is made into four parts by quartiles, with the third quartile separating the upper
quarter of the data from the rest, the second quartile being the median, and the “rst
quartile separating the lower quarter of the data from the rest. The distribution can
be even more “nely divided by computing percentiles of the distribution. These
quantities give the analyst a sense of the so-calledtails of the distribution (i.e.,
values that are relatively extreme, either small or large). For example, the 95th
percentile separates the highest 5% from the bottom 95%. Similar de“nitions
prevail for extremes on the lower side orlower tail of the distribution. The 1st
percentile separates the bottom 1% from the rest of the distribution. The concept
of percentiles will play a major role in much that will be covered in future chapters.

1.7 General Types of Statistical Studies: Designed
Experiment, Observational Study, and Retrospective Study

In the foregoing sections we have emphasized the notion of sampling from a pop-
ulation and the use of statistical methods to learn or perhaps a�rm important
information about the population. The information sought and learned through
the use of these statistical methods can often be in”uential in decision making and
problem solving in many important scienti“c and engineering areas. As an illustra-
tion, Example 1.3 describes a simple experiment in which the results may provide
an aid in determining the kinds of conditions under which it is not advisable to use
a particular aluminum alloy that may have a dangerous vulnerability to corrosion.
The results may be of use not only to those who produce the alloy, but also to the
customer who may consider using it. This illustration, as well as many more that
appear in Chapters 13 through 15, highlights the concept of designing or control-
ling experimental conditions (combinations of coating conditions and humidity) of
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interest to learn about some characteristic or measurement (level of corrosion) that
results from these conditions. Statistical methods that make use of measures of
central tendency in the corrosion measure, as well as measures of variability, are
employed. As the reader will observe later in the text, these methods often lead to
a statistical model like that discussed in Section 1.6. In this case, the model may be
used to estimate (or predict) the corrosion measure as a function of humidity and
the type of coating employed. Again, in developing this kind of model, descriptive
statistics that highlight central tendency and variability become very useful.

The information supplied in Example 1.3 illustrates nicely the types of engi-
neering questions asked and answered by the use of statistical methods that are
employed through a designed experiment and presented in this text. They are

(i) What is the nature of the impact of relative humidity on the corrosion of the
aluminum alloy within the range of relative humidity in this experiment?

(ii) Does the chemical corrosion coating reduce corrosion levels and can the e�ect
be quanti“ed in some fashion?

(iii) Is there interaction between coating type and relative humidity that impacts
their in”uence on corrosion of the alloy? If so, what is its interpretation?

What Is Interaction?

The importance of questions (i) and (ii) should be clear to the reader, as they
deal with issues important to both producers and users of the alloy. But what
about question (iii)? The concept of interaction will be discussed at length in
Chapters 14 and 15. Consider the plot in Figure 1.3. This is an illustration of
the detection of interaction between two factors in a simple designed experiment.
Note that the lines connecting the sample means are not parallel.Parallelism
would have indicated that the e�ect (seen as a result of the slope of the lines)
of relative humidity is the same, namely a negative e�ect, for both an uncoated
condition and the chemical corrosion coating. Recall that the negative slope implies
that corrosion becomes more pronounced as humidity rises. Lack of parallelism
implies an interaction between coating type and relative humidity. The nearly
•”atŽ line for the corrosion coating as opposed to a steeper slope for the uncoated
condition suggests thatnot only is the chemical corrosion coating bene“cial (note
the displacement between the lines), but the presence of the coating renders the
e�ect of humidity negligible. Clearly all these questions are very important to the
e�ect of the two individual factors and to the interpretation of the interaction, if
it is present.

Statistical models are extremely useful in answering questions such as those
listed in (i), (ii), and (iii), where the data come from a designed experiment. But
one does not always have the luxury or resources to employ a designed experiment.
For example, there are many instances in which the conditions of interest to the
scientist or engineer cannot be implemented simply because theimportant factors
cannot be controlled. In Example 1.3, the relative humidity and coating type (or
lack of coating) are quite easy to control. This of course is the de“ning feature of
a designed experiment. In many “elds, factors that need to be studied cannot be
controlled for any one of various reasons. Tight control as in Example 1.3 allows the
analyst to be con“dent that any di�erences found (for example, in corrosion levels)
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are due to the factors under control. As a second illustration, consider Exercise
1.6 on page 13. Suppose in this case 24 specimens of silicone rubber are selected
and 12 assigned to each of the curing temperature levels. The temperatures are
controlled carefully, and thus this is an example of a designed experiment with a
single factor being curing temperature. Di�erences found in the mean tensile
strength would be assumed to be attributed to the di�erent curing temperatures.

What If Factors Are Not Controlled?

Suppose there are no factors controlled andno random assignmentof “xed treat-
ments to experimental units and yet there is a need to glean information from a
data set. As an illustration, consider a study in which interest centers around the
relationship between blood cholesterol levels and the amount of sodium measured
in the blood. A group of individuals were monitored over time for both blood
cholesterol and sodium. Certainly some useful information can be gathered from
such a data set. However, it should be clear that there certainly can be no strict
control of blood sodium levels. Ideally, the subjects should be divided randomly
into two groups, with one group assigned a speci“c high level of blood sodium and
the other a speci“c low level of blood sodium. Obviously this cannot be done.
Clearly changes in cholesterol can be experienced because of changes in one of
a number of other factors that were not controlled. This kind of study, without
factor control, is called an observational study . Much of the time it involves a
situation in which subjects are observed across time.

Biological and biomedical studies are often by necessity observational studies.
However, observational studies are not con“ned to those areas. For example, con-
sider a study that is designed to determine the in”uence of ambient temperature on
the electric power consumed by a chemical plant. Clearly, levels of ambient temper-
ature cannot be controlled, and thus the data structure can only be a monitoring
of the data from the plant over time.

It should be apparent that the striking di�erence between a well-designed ex-
periment and observational studies is the di�culty in determination of true cause
and e�ect with the latter. Also, di�erences found in the fundamental response
(e.g., corrosion levels, blood cholesterol, plant electric power consumption) may
be due to other underlying factors that were not controlled. Ideally, in a designed
experiment the nuisance factorswould be equalized via the randomization process.
Certainly changes in blood cholesterol could be due to fat intake, exercise activity,
and so on. Electric power consumption could be a�ected by the amount of product
produced or even the purity of the product produced.

Another often ignored disadvantage of an observational study when compared
to carefully designed experiments is that, unlike the latter, observational studies
are at the mercy of nature, environmental or other uncontrolled circumstances
that impact the ranges of factors of interest. For example, in the biomedical study
regarding the in”uence of blood sodium levels on blood cholesterol, it is possible
that there is indeed a strong in”uence but the particular data set used did not
involve enough observed variation in sodium levels because of the nature of the
subjects chosen. Of course, in a designed experiment, the analyst chooses and
controls ranges of factors.
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A third type of statistical study which can be very useful but has clear dis-
advantages when compared to a designed experiment is aretrospective study .
This type of study uses strictly historical data , data taken over a speci“c period
of time. One obvious advantage of retrospective data is that there is reduced cost
in collecting the data. However, as one might expect, there are clear disadvantages.

(i) Validity and reliability of historical data are often in doubt.

(ii) If time is an important aspect of the structure of the data, there may be data
missing.

(iii) There may be errors in collection of the data that are not known.

(iv) Again, as in the case of observational data, there is no control on the ranges
of the measured variables (the factors in a study). Indeed, the ranges found
in historical data may not be relevant for current studies.

In Section 1.6, some attention was given to modeling of relationships among vari-
ables. We introduced the notion of regression analysis, which is covered in Chapters
11 and 12 and is illustrated as a form of data analysis for designed experiments
discussed in Chapters 14 and 15. In Section 1.6, a model relating population mean
tensile strength of cloth to percentages of cotton was used for illustration, where
20 specimens of cloth represented the experimental units. In that case, the data
came from a simple designed experiment where the individual cotton percentages
were selected by the scientist.

Often both observational data and retrospective data are used for the purpose
of observing relationships among variables through model-building procedures dis-
cussed in Chapters 11 and 12. While the advantages of designed experiments
certainly apply when the goal is statistical model building, there are many areas
in which designing of experiments is not possible. Thus,observational or historical
data must be used. We refer here to a historical data set that is found in Exercise
12.5 on page 450. The goal is to build a model that will result in an equation
or relationship that relates monthly electric power consumed to average ambient
temperature x1, the number of days in the month x2, the average product purity
x3, and the tons of product producedx4. The data are the past year•s historical
data.

Exercises

1.13 A manufacturer of electronic components is in-
terested in determining the lifetime of a certain type
of battery. A sample, in hours of life, is as follows:

123, 116, 122, 110, 175, 126, 125, 111, 118, 117.

(a) Find the sample mean and median.
(b) What feature in this data set is responsible for the

substantial di�erence between the two?

1.14 A tire manufacturer wants to determine the in-
ner diameter of a certain grade of tire. Ideally, the
diameter would be 570 mm. The data are as follows:

572, 572, 573, 568, 569, 575, 565, 570.

(a) Find the sample mean and median.
(b) Find the sample variance, standard deviation, and

range.
(c) Using the calculated statistics in parts (a) and (b),

can you comment on the quality of the tires?

1.15 Five independent coin tosses result in
HHHHH . It turns out that if the coin is fair the
probability of this outcome is (1 / 2)5 = 0 .03125. Does
this produce strong evidence that the coin is not fair?
Comment and use the concept of P-value discussed in
Section 1.1.
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1.16 Show that the n pieces of information in
n�

i =1
(xi Š x̄)2 are not independent; that is, show that

n�

i =1

(xi Š x̄) = 0 .

1.17 A study of the e�ects of smoking on sleep pat-
terns is conducted. The measure observed is the time,
in minutes, that it takes to fall asleep. These data are
obtained:

Smokers: 69.3 56.0 22.1 47.6
53.2 48.1 52.7 34.4
60.2 43.8 23.2 13.8

Nonsmokers: 28.6 25.1 26.4 34.9
29.8 28.4 38.5 30.2
30.6 31.8 41.6 21.1
36.0 37.9 13.9

(a) Find the sample mean for each group.
(b) Find the sample standard deviation for each group.
(c) Make a dot plot of the data sets A and B on the

same line.
(d) Comment on what kind of impact smoking appears

to have on the time required to fall asleep.

1.18 The following scores represent the “nal exami-
nation grades for an elementary statistics course:

23 60 79 32 57 74 52 70 82
36 80 77 81 95 41 65 92 85
55 76 52 10 64 75 78 25 80
98 81 67 41 71 83 54 64 72
88 62 74 43 60 78 89 76 84
48 84 90 15 79 34 67 17 82
69 74 63 80 85 61

(a) Construct a stem-and-leaf plot for the examination
grades in which the stems are 1, 2, 3, . . . , 9.

(b) Construct a relative frequency histogram, draw an
estimate of the graph of the distribution, and dis-
cuss the skewness of the distribution.

(c) Compute the sample mean, sample median, and
sample standard deviation.

1.19 The following data represent the length of life in
years, measured to the nearest tenth, of 30 similar fuel
pumps:

2.0 3.0 0.3 3.3 1.3 0.4
0.2 6.0 5.5 6.5 0.2 2.3
1.5 4.0 5.9 1.8 4.7 0.7
4.5 0.3 1.5 0.5 2.5 5.0
1.0 6.0 5.6 6.0 1.2 0.2

(a) Construct a stem-and-leaf plot for the life in years
of the fuel pumps, using the digit to the left of the
decimal point as the stem for each observation.

(b) Set up a relative frequency distribution.

(c) Compute the sample mean, sample range, and sam-
ple standard deviation.

1.20 The following data represent the length of life,
in seconds, of 50 fruit ”ies subject to a new spray in a
controlled laboratory experiment:

17 20 10 9 23 13 12 19 18 24
12 14 6 9 13 6 7 10 13 7
16 18 8 13 3 32 9 7 10 11
13 7 18 7 10 4 27 19 16 8
7 10 5 14 15 10 9 6 7 15

(a) Construct a double-stem-and-leaf plot for the life
span of the fruit ”ies using the stems 0 � , 0·, 1� , 1·,
2� , 2·, and 3� such that stems coded by the symbols
� and · are associated, respectively, with leaves 0
through 4 and 5 through 9.

(b) Set up a relative frequency distribution.
(c) Construct a relative frequency histogram.
(d) Find the median.

1.21 The lengths of power failures, in minutes, are
recorded in the following table.

22 18 135 15 90 78 69 98 102
83 55 28 121 120 13 22 124 112
70 66 74 89 103 24 21 112 21
40 98 87 132 115 21 28 43 37
50 96 118 158 74 78 83 93 95

(a) Find the sample mean and sample median of the
power-failure times.

(b) Find the sample standard deviation of the power-
failure times.

1.22 The following data are the measures of the di-
ameters of 36 rivet heads in 1/100 of an inch.

6.72 6.77 6.82 6.70 6.78 6.70 6.62 6.75
6.66 6.66 6.64 6.76 6.73 6.80 6.72 6.76
6.76 6.68 6.66 6.62 6.72 6.76 6.70 6.78
6.76 6.67 6.70 6.72 6.74 6.81 6.79 6.78
6.66 6.76 6.76 6.72

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Comment on whether or not there is any clear in-
dication that the sample came from a population
that has a bell-shaped distribution.

1.23 The hydrocarbon emissions at idling speed in
parts per million (ppm) for automobiles of 1980 and
1990 model years are given for 20 randomly selected
cars.
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1980 models:
141 359 247 940 882 494 306 210 105 880
200 223 188 940 241 190 300 435 241 380

1990 models:
140 160 20 20 223 60 20 95 360 70
220 400 217 58 235 380 200 175 85 65

(a) Construct a dot plot as in Figure 1.1.
(b) Compute the sample means for the two years and

superimpose the two means on the plots.
(c) Comment on what the dot plot indicates regarding

whether or not the population emissions changed
from 1980 to 1990. Use the concept of variability
in your comments.

1.24 The following are historical data on sta� salaries
(dollars per pupil) for 30 schools sampled in the eastern
part of the United States in the early 1970s.

3.79 2.99 2.77 2.91 3.10 1.84 2.52 3.22
2.45 2.14 2.67 2.52 2.71 2.75 3.57 3.85
3.36 2.05 2.89 2.83 3.13 2.44 2.10 3.71
3.14 3.54 2.37 2.68 3.51 3.37

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Construct a stem-and-leaf display of the data.

1.25 The following data set is related to that in Ex-
ercise 1.24. It gives the percentages of the families that
are in the upper income level, for the same individual
schools in the same order as in Exercise 1.24.

72.2 31.9 26.5 29.1 27.3 8.6 22.3 26.5
20.4 12.8 25.1 19.2 24.1 58.2 68.1 89.2
55.1 9.4 14.5 13.9 20.7 17.9 8.5 55.4
38.1 54.2 21.5 26.2 59.1 43.3

(a) Calculate the sample mean.
(b) Calculate the sample median.
(c) Construct a relative frequency histogram of the

data.
(d) Compute the 10% trimmed mean. Compare with

the results in (a) and (b) and comment.

1.26 Suppose it is of interest to use the data sets in
Exercises 1.24 and 1.25 to derive a model that would
predict sta� salaries as a function of percentage of fam-
ilies in a high income level for current school systems.
Comment on any disadvantage in carrying out this type
of analysis.

1.27 A study is done to determine the in”uence of
the wear, y, of a bearing as a function of the load, x,
on the bearing. A designed experiment is used for this
study. Three levels of load were used, 700 lb, 1000 lb,
and 1300 lb. Four specimens were used at each level,

and the sample means were, respectively, 210, 325, and
375.
(a) Plot average wear against load.
(b) From the plot in (a), does it appear as if a relation-

ship exists between wear and load?
(c) Suppose we look at the individual wear values for

each of the four specimens at each load level (see
the data that follow). Plot the wear results for all
specimens against the three load values.

(d) From your plot in (c), does it appear as if a clear
relationship exists? If your answer is di�erent from
that in (b), explain why.

x
700 1000 1300

y1 145 250 150
y2 105 195 180
y3 260 375 420
y4 330 480 750

ȳ1 = 210 ȳ2 = 325 ȳ3 = 375

1.28 Many manufacturing companies in the United
States and abroad use molded parts as components of
a process. Shrinkage is often a major problem. Thus, a
molded die for a part is built larger than nominal size
to allow for part shrinkage. In an injection molding
study it is known that the shrinkage is in”uenced by
many factors, among which are the injection velocity
in ft/sec and mold temperature in � C. The following
two data sets show the results of a designed experiment
in which injection velocity was held at two levels (low
and high) and mold temperature was held constant at
a low level. The shrinkage is measured in cm × 104.
Shrinkage values at low injection velocity:

72.68 72.62 72.58 72.48 73.07
72.55 72.42 72.84 72.58 72.92

Shrinkage values at high injection velocity:
71.62 71.68 71.74 71.48 71.55
71.52 71.71 71.56 71.70 71.50

(a) Construct a dot plot of both data sets on the same
graph. Indicate on the plot both shrinkage means,
that for low injection velocity and high injection
velocity.

(b) Based on the graphical results in (a), using the lo-
cation of the two means and your sense of variabil-
ity, what do you conclude regarding the e�ect of
injection velocity on shrinkage at low mold tem-
perature?

1.29 Use the data in Exercise 1.24 to construct a box
plot.

1.30 Below are the lifetimes, in hours, of “fty 40-watt,
110-volt internally frosted incandescent lamps, taken
from forced life tests:
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919 1196 785 1126 936 918
1156 920 948 1067 1092 1162
1170 929 950 905 972 1035
1045 855 1195 1195 1340 1122
938 970 1237 956 1102 1157
978 832 1009 1157 1151 1009
765 958 902 1022 1333 811

1217 1085 896 958 1311 1037
702 923

Construct a box plot for these data.

1.31 Consider the situation of Exercise 1.28. But now
use the following data set, in which shrinkage is mea-
sured once again at low injection velocity and high in-
jection velocity. However, this time the mold temper-
ature is raised to a high level and held constant.
Shrinkage values at low injection velocity:

76.20 76.09 75.98 76.15 76.17
75.94 76.12 76.18 76.25 75.82

Shrinkage values at high injection velocity:
93.25 93.19 92.87 93.29 93.37
92.98 93.47 93.75 93.89 91.62

(a) As in Exercise 1.28, construct a dot plot with both
data sets on the same graph and identify both
means (i.e., mean shrinkage for low injection ve-
locity and for high injection velocity).

(b) As in Exercise 1.28, comment on the in”uence of
injection velocity on shrinkage for high mold tem-
perature. Take into account the position of the two
means and the variability around each mean.

(c) Compare your conclusion in (b) with that in (b)
of Exercise 1.28 in which mold temperature was
held at a low level. Would you say that there is
an interaction between injection velocity and mold
temperature? Explain.

1.32 Use the results of Exercises 1.28 and 1.31 to cre-
ate a plot that illustrates the interaction evident from
the data. Use the plot in Figure 1.3 in Example 1.3 as
a guide. Could the type of information found in Exer-
cises 1.28 and 1.31 have been found in an observational
study in which there was no control on injection veloc-
ity and mold temperature by the analyst? Explain why
or why not.

1.33 Group Project: Collect the shoe size of every-
one in the class. Use the sample means and variances
and the types of plots presented in this chapter to sum-
marize any features that draw a distinction between the
distributions of shoe sizes for males and females. Do
the same for the height of everyone in the class.





Chapter 2

Probability

2.1 Sample Space
In the study of statistics, we are concerned basically with the presentation and
interpretation of chance outcomes that occur in a planned study or scienti“c
investigation. For example, we may record the number of accidents that occur
monthly at the intersection of Driftwood Lane and Royal Oak Drive, hoping to
justify the installation of a tra�c light; we might classify items coming o� an as-
sembly line as •defectiveŽ or •nondefectiveŽ; or we may be interested in the volume
of gas released in a chemical reaction when the concentration of an acid is varied.
Hence, the statistician is often dealing with either numerical data, representing
counts or measurements, orcategorical data , which can be classi“ed according
to some criterion.

We shall refer to any recording of information, whether it be numerical or
categorical, as anobservation . Thus, the numbers 2, 0, 1, and 2, representing
the number of accidents that occurred for each month from January through April
during the past year at the intersection of Driftwood Lane and Royal Oak Drive,
constitute a set of observations. Similarly, the categorical dataN, D, N, N, and
D, representing the items found to be defective or nondefective when “ve items are
inspected, are recorded as observations.

Statisticians use the wordexperiment to describe any process that generates
a set of data. A simple example of a statistical experiment is the tossing of a coin.
In this experiment, there are only two possible outcomes, heads or tails. Another
experiment might be the launching of a missile and observing of its velocity at
speci“ed times. The opinions of voters concerning a new sales tax can also be
considered as observations of an experiment. We are particularly interested in the
observations obtained by repeating the experiment several times. In most cases, the
outcomes will depend on chance and, therefore, cannot be predicted with certainty.
If a chemist runs an analysis several times under the same conditions, he or she will
obtain di�erent measurements, indicating an element of chance in the experimental
procedure. Even when a coin is tossed repeatedly, we cannot be certain that a given
toss will result in a head. However, we know the entire set of possibilities for each
toss.

Given the discussion in Section 1.7, we should deal with the breadth of the term
experiment. Three types of statistical studies were reviewed, and several examples
were given of each. In each of the three cases,designed experiments, observational
studies, and retrospective studies, the end result was a set ofdata that of course is
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subject to uncertainty . Though only one of these has the wordexperiment in its
description, the process of generating the data or the process of observing the data
is part of an experiment. The corrosion study discussed in Section 1.2 certainly
involves an experiment, with measures of corrosion representing the data. The ex-
ample given in Section 1.7 in which blood cholesterol and sodium were observed on
a group of individuals represented an observational study (as opposed to adesigned
experiment), and yet the process generated data and the outcome is subject to un-
certainty. Thus, it is an experiment. A third example in Section 1.7 represented
a retrospective study in which historical data on monthly electric power consump-
tion and average monthly ambient temperature were observed. Even though the
data may have been in the “les for decades, the process is still referred to as an
experiment.

De“nition 2.1: The set of all possible outcomes of a statistical experiment is called thesample
space and is represented by the symbolS.

Each outcome in a sample space is called anelement or a member of the
sample space, or simply asample point . If the sample space has a “nite number
of elements, we maylist the members separated by commas and enclosed in braces.
Thus, the sample spaceS, of possible outcomes when a coin is ”ipped, may be
written

S = { H, T } ,

where H and T correspond to heads and tails, respectively.

Example 2.1: Consider the experiment of tossing a die. If we are interested in the number that
shows on the top face, the sample space is

S1 = { 1, 2, 3, 4, 5, 6} .

If we are interested only in whether the number is even or odd, the sample space
is simply

S2 = { even, odd} .
Example 2.1 illustrates the fact that more than one sample space can be used to

describe the outcomes of an experiment. In this case,S1 provides more information
than S2. If we know which element in S1 occurs, we can tell which outcome inS2
occurs; however, a knowledge of what happens inS2 is of little help in determining
which element in S1 occurs. In general, it is desirable to use the sample space that
gives the most information concerning the outcomes of the experiment. In some
experiments, it is helpful to list the elements of the sample space systematically by
means of atree diagram .

Example 2.2: An experiment consists of ”ipping a coin and then ”ipping it a second time if a
head occurs. If a tail occurs on the “rst ”ip, then a die is tossed once. To list
the elements of the sample space providing the most information, we construct the
tree diagram of Figure 2.1. The various paths along the branches of the tree give
the distinct sample points. Starting with the top left branch and moving to the
right along the “rst path, we get the sample point HH, indicating the possibility
that heads occurs on two successive ”ips of the coin. Likewise, the sample point
T3 indicates the possibility that the coin will show a tail followed by a 3 on the
toss of the die. By proceeding along all paths, we see that the sample space is

S = { HH, HT, T 1, T2, T3, T4, T5, T6} .
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Figure 2.1: Tree diagram for Example 2.2.

Many of the concepts in this chapter are best illustrated with examples involving
the use of dice and cards. These are particularly important applications to use early
in the learning process, to facilitate the ”ow of these new concepts into scienti“c
and engineering examples such as the following.

Example 2.3: Suppose that three items are selected at random from a manufacturing process.
Each item is inspected and classi“ed defective,D, or nondefective, N. To list the
elements of the sample space providing the most information, we construct the tree
diagram of Figure 2.2. Now, the various paths along the branches of the tree give
the distinct sample points. Starting with the “rst path, we get the sample point
DDD, indicating the possibility that all three items inspected are defective. As we
proceed along the other paths, we see that the sample space is

S = { DDD, DDN, DND, DNN, NDD, NDN, NND, NNN } .

Sample spaces with a large or in“nite number of sample points are best de-
scribed by a statement or rule method . For example, if the possible outcomes
of an experiment are the set of cities in the world with a population over 1 million,
our sample space is written

S = { x | x is a city with a population over 1 million } ,

which reads •S is the set of all x such that x is a city with a population over 1
million.Ž The vertical bar is read •such that.Ž Similarly, if S is the set of all points
(x, y) on the boundary or the interior of a circle of radius 2 with center at the
origin, we write the rule

S = { (x, y) | x2 + y2 � 4} .
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Figure 2.2: Tree diagram for Example 2.3.

Whether we describe the sample space by the rule method or by listing the
elements will depend on the speci“c problem at hand. The rule method has practi-
cal advantages, particularly for many experiments where listing becomes a tedious
chore.

Consider the situation of Example 2.3 in which items from a manufacturing
process are eitherD , defective, or N , nondefective. There are many important
statistical procedures called sampling plans that determine whether or not a •lotŽ
of items is considered satisfactory. One such plan involves sampling untilk defec-
tives are observed. Suppose the experiment is to sample items randomly until one
defective item is observed. The sample space for this case is

S = { D, ND, NND, NNND, . . . } .

2.2 Events
For any given experiment, we may be interested in the occurrence of certainevents
rather than in the occurrence of a speci“c element in the sample space. For in-
stance, we may be interested in the eventA that the outcome when a die is tossed is
divisible by 3. This will occur if the outcome is an element of the subsetA = { 3, 6}
of the sample spaceS1 in Example 2.1. As a further illustration, we may be inter-
ested in the eventB that the number of defectives is greater than 1 in Example
2.3. This will occur if the outcome is an element of the subset

B = { DDN, DND, NDD, DDD }

of the sample spaceS.
To each event we assign a collection of sample points, which constitute a subset

of the sample space. That subset represents all of the elements for which the event
is true.
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De“nition 2.2: An event is a subset of a sample space.

Example 2.4: Given the sample spaceS = { t | t � 0} , where t is the life in years of a certain
electronic component, then the eventA that the component fails before the end of
the “fth year is the subset A = { t | 0 � t < 5} .

It is conceivable that an event may be a subset that includes the entire sample
spaceS or a subset ofS called the null set and denoted by the symbol� , which
contains no elements at all. For instance, if we letA be the event of detecting a
microscopic organism by the naked eye in a biological experiment, thenA = � .
Also, if

B = { x | x is an even factor of 7} ,

then B must be the null set, since the only possible factors of 7 are the odd numbers
1 and 7.

Consider an experiment where the smoking habits of the employees of a man-
ufacturing “rm are recorded. A possible sample space might classify an individual
as a nonsmoker, a light smoker, a moderate smoker, or a heavy smoker. Let the
subset of smokers be some event. Then all the nonsmokers correspond to a di�erent
event, also a subset ofS, which is called the complement of the set of smokers.

De“nition 2.3: The complement of an event A with respect to S is the subset of all elements
of S that are not in A. We denote the complement ofA by the symbol A� .

Example 2.5: Let R be the event that a red card is selected from an ordinary deck of 52 playing
cards, and let S be the entire deck. ThenR� is the event that the card selected
from the deck is not a red card but a black card.

Example 2.6: Consider the sample space

S = { book, cell phone, mp3, paper, stationery, laptop} .

Let A = { book, stationery, laptop, paper} . Then the complement of A is A� =
{ cell phone, mp3} .

We now consider certain operations with events that will result in the formation
of new events. These new events will be subsets of the same sample space as the
given events. Suppose thatA and B are two events associated with an experiment.
In other words, A and B are subsets of the same sample spaceS. For example, in
the tossing of a die we might letA be the event that an even number occurs and
B the event that a number greater than 3 shows. Then the subsetsA = { 2, 4, 6}
and B = { 4, 5, 6} are subsets of the same sample space

S = { 1, 2, 3, 4, 5, 6} .

Note that both A and B will occur on a given toss if the outcome is an element of
the subset { 4, 6} , which is just the intersection of A and B .

De“nition 2.4: The intersection of two events A and B , denoted by the symbolA � B , is the
event containing all elements that are common toA and B .

Example 2.7: Let E be the event that a person selected at random in a classroom is majoring in
engineering, and letF be the event that the person is female. ThenE � F is the
event of all female engineering students in the classroom.
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Example 2.8: Let V = { a, e, i, o, u} and C = { l, r, s, t } ; then it follows that V � C = � . That is,
V and C have no elements in common and, therefore, cannot both simultaneously
occur.

For certain statistical experiments it is by no means unusual to de“ne two
events,A and B , that cannot both occur simultaneously. The eventsA and B are
then said to bemutually exclusive . Stated more formally, we have the following
de“nition:

De“nition 2.5: Two events A and B are mutually exclusive , or disjoint , if A � B = � , that
is, if A and B have no elements in common.

Example 2.9: A cable television company o�ers programs on eight di�erent channels, three of
which are a�liated with ABC, two with NBC, and one with CBS. The other
two are an educational channel and the ESPN sports channel. Suppose that a
person subscribing to this service turns on a television set without “rst selecting
the channel. Let A be the event that the program belongs to the NBC network and
B the event that it belongs to the CBS network. Since a television program cannot
belong to more than one network, the eventsA and B have no programs in common.
Therefore, the intersection A � B contains no programs, and consequently the
events A and B are mutually exclusive.

Often one is interested in the occurrence of at least one of two events associated
with an experiment. Thus, in the die-tossing experiment, if

A = { 2, 4, 6} and B = { 4, 5, 6} ,

we might be interested in eitherA or B occurring or both A and B occurring. Such
an event, called theunion of A and B , will occur if the outcome is an element of
the subset { 2, 4, 5, 6} .

De“nition 2.6: The union of the two eventsA and B , denoted by the symbolA � B , is the event
containing all the elements that belong to A or B or both.

Example 2.10: Let A = { a, b, c} and B = { b, c, d, e} ; then A � B = { a, b, c, d, e} .

Example 2.11: Let P be the event that an employee selected at random from an oil drilling com-
pany smokes cigarettes. LetQ be the event that the employee selected drinks
alcoholic beverages. Then the eventP � Q is the set of all employees who either
drink or smoke or do both.

Example 2.12: If M = { x | 3 < x < 9} and N = { y | 5 < y < 12} , then

M � N = { z | 3 < z < 12} .
The relationship between events and the corresponding sample space can be

illustrated graphically by means of Venn diagrams . In a Venn diagram we let
the sample space be a rectangle and represent events by circles drawn inside the
rectangle. Thus, in Figure 2.3, we see that

A � B = regions 1 and 2,
B � C = regions 1 and 3,



2.2 Events 41

A B

C

S

1

4 3

2

7 6

5

Figure 2.3: Events represented by various regions.

A � C = regions 1, 2, 3, 4, 5, and 7,

B � � A = regions 4 and 7,
A � B � C = region 1,

(A � B ) � C� = regions 2, 6, and 7,

and so forth.
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Figure 2.4: Events of the sample spaceS.

In Figure 2.4, we see that eventsA, B , and C are all subsets of the sample
spaceS. It is also clear that event B is a subset of eventA; event B � C has no
elements and henceB and C are mutually exclusive; eventA � C has at least one
element; and eventA � B = A. Figure 2.4 might, therefore, depict a situation
where we select a card at random from an ordinary deck of 52 playing cards and
observe whether the following events occur:

A: the card is red,
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B : the card is the jack, queen, or king of diamonds,

C: the card is an ace.

Clearly, the event A � C consists of only the two red aces.
Several results that follow from the foregoing de“nitions, which may easily be

veri“ed by means of Venn diagrams, are as follows:

1. A � � = � .
2. A � � = A.
3. A � A� = � .
4. A � A� = S.
5. S� = � .

6. � � = S.

7. (A� )� = A.

8. (A � B )� = A� � B � .

9. (A � B )� = A� � B � .

Exercises

2.1 List the elements of each of the following sample
spaces:
(a) the set of integers between 1 and 50 divisible by 8;

(b) the set S = { x | x2 + 4 x Š 5 = 0} ;
(c) the set of outcomes when a coin is tossed until a

tail or three heads appear;
(d) the set S = { x | x is a continent} ;
(e) the set S = { x | 2x Š 4 � 0 and x < 1} .

2.2 Use the rule method to describe the sample space
S consisting of all points in the “rst quadrant inside a
circle of radius 3 with center at the origin.

2.3 Which of the following events are equal?
(a) A = { 1, 3} ;
(b) B = { x | x is a number on a die} ;

(c) C = { x | x2 Š 4x + 3 = 0 } ;
(d) D = { x | x is the number of heads when six coins

are tossed} .

2.4 An experiment involves tossing a pair of dice, one
green and one red, and recording the numbers that
come up. If x equals the outcome on the green die
and y the outcome on the red die, describe the sample
spaceS
(a) by listing the elements ( x, y );
(b) by using the rule method.

2.5 An experiment consists of tossing a die and then
”ipping a coin once if the number on the die is even. If
the number on the die is odd, the coin is ”ipped twice.
Using the notation 4 H , for example, to denote the out-
come that the die comes up 4 and then the coin comes
up heads, and 3HT to denote the outcome that the die

comes up 3 followed by a head and then a tail on the
coin, construct a tree diagram to show the 18 elements
of the sample spaceS.

2.6 Two jurors are selected from 4 alternates to serve
at a murder trial. Using the notation A1A3, for exam-
ple, to denote the simple event that alternates 1 and 3
are selected, list the 6 elements of the sample spaceS.

2.7 Four students are selected at random from a
chemistry class and classi“ed as male or female. List
the elements of the sample spaceS1, using the letter
M for male and F for female. De“ne a second sample
spaceS2 where the elements represent the number of
females selected.

2.8 For the sample space of Exercise 2.4,
(a) list the elements corresponding to the event A that

the sum is greater than 8;
(b) list the elements corresponding to the event B that

a 2 occurs on either die;
(c) list the elements corresponding to the event C that

a number greater than 4 comes up on the green die;
(d) list the elements corresponding to the event A � C;
(e) list the elements corresponding to the event A � B ;
(f) list the elements corresponding to the event B � C;
(g) construct a Venn diagram to illustrate the intersec-

tions and unions of the events A, B , and C.

2.9 For the sample space of Exercise 2.5,
(a) list the elements corresponding to the event A that

a number less than 3 occurs on the die;
(b) list the elements corresponding to the event B that

two tails occur;
(c) list the elements corresponding to the event A� ;
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(d) list the elements corresponding to the event A� � B ;
(e) list the elements corresponding to the event A � B .

2.10 An engineering “rm is hired to determine if cer-
tain waterways in Virginia are safe for “shing. Samples
are taken from three rivers.
(a) List the elements of a sample spaceS, using the

letters F for safe to “sh and N for not safe to “sh.
(b) List the elements of S corresponding to event E

that at least two of the rivers are safe for “shing.
(c) De“ne an event that has as its elements the points

{ F F F, NF F, F F N, NF N } .

2.11 The resumés of two male applicants for a college
teaching position in chemistry are placed in the same
“le as the resumés of two female applicants. Two po-
sitions become available, and the “rst, at the rank of
assistant professor, is “lled by selecting one of the four
applicants at random. The second position, at the rank
of instructor, is then “lled by selecting at random one
of the remaining three applicants. Using the notation
M 2F1, for example, to denote the simple event that
the “rst position is “lled by the second male applicant
and the second position is then “lled by the “rst female
applicant,
(a) list the elements of a sample spaceS;
(b) list the elements of S corresponding to event A that

the position of assistant professor is “lled by a male
applicant;

(c) list the elements of S corresponding to event B that
exactly one of the two positions is “lled by a male
applicant;

(d) list the elements of S corresponding to event C that
neither position is “lled by a male applicant;

(e) list the elements of S corresponding to the event
A � B ;

(f) list the elements of S corresponding to the event
A � C;

(g) construct a Venn diagram to illustrate the intersec-
tions and unions of the events A, B , and C.

2.12 Exercise and diet are being studied as possi-
ble substitutes for medication to lower blood pressure.
Three groups of subjects will be used to study the ef-
fect of exercise. Group 1 is sedentary, while group 2
walks and group 3 swims for 1 hour a day. Half of each
of the three exercise groups will be on a salt-free diet.
An additional group of subjects will not exercise or re-
strict their salt, but will take the standard medication.
Use Z for sedentary, W for walker, S for swimmer, Y
for salt, N for no salt, M for medication, and F for
medication free.
(a) Show all of the elements of the sample spaceS.

(b) Given that A is the set of nonmedicated subjects
and B is the set of walkers, list the elements of
A � B .

(c) List the elements of A � B .

2.13 Construct a Venn diagram to illustrate the pos-
sible intersections and unions for the following events
relative to the sample space consisting of all automo-
biles made in the United States.

F : Four door, S : Sun roof, P : Power steering.

2.14 If S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and A =
{ 0, 2, 4, 6, 8} , B = { 1, 3, 5, 7, 9} , C = { 2, 3, 4, 5} , and
D = { 1, 6, 7} , list the elements of the sets correspond-
ing to the following events:
(a) A � C;
(b) A � B ;
(c) C� ;
(d) ( C� � D ) � B ;
(e) (S � C)� ;
(f) A � C � D � .

2.15 Consider the sample spaceS = { copper, sodium,
nitrogen, potassium, uranium, oxygen, zinc } and the
events

A = { copper, sodium, zinc} ,
B = { sodium, nitrogen, potassium} ,
C = { oxygen} .

List the elements of the sets corresponding to the fol-
lowing events:
(a) A� ;
(b) A � C;
(c) ( A � B � ) � C� ;
(d) B � � C� ;
(e) A � B � C;
(f) ( A � � B � ) � (A � � C).

2.16 If S = { x | 0 < x < 12} , M = { x | 1 < x < 9} ,
and N = { x | 0 < x < 5} , “nd
(a) M � N ;
(b) M � N ;
(c) M � � N � .

2.17 Let A, B , and C be events relative to the sam-
ple space S. Using Venn diagrams, shade the areas
representing the following events:
(a) ( A � B )� ;
(b) ( A � B )� ;
(c) ( A � C) � B .
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2.18 Which of the following pairs of events are mutu-
ally exclusive?
(a) A golfer scoring the lowest 18-hole round in a 72-

hole tournament and losing the tournament.
(b) A poker player getting a ”ush (all cards in the same

suit) and 3 of a kind on the same 5-card hand.
(c) A mother giving birth to a baby girl and a set of

twin daughters on the same day.
(d) A chess player losing the last game and winning the

match.

2.19 Suppose that a family is leaving on a summer
vacation in their camper and that M is the event that
they will experience mechanical problems, T is the
event that they will receive a ticket for committing a
tra�c violation, and V is the event that they will ar-
rive at a campsite with no vacancies. Referring to the
Venn diagram of Figure 2.5, state in words the events
represented by the following regions:
(a) region 5;

(b) region 3;
(c) regions 1 and 2 together;
(d) regions 4 and 7 together;
(e) regions 3, 6, 7, and 8 together.

2.20 Referring to Exercise 2.19 and the Venn diagram
of Figure 2.5, list the numbers of the regions that rep-
resent the following events:
(a) The family will experience no mechanical problems

and will not receive a ticket for a tra�c violation
but will arrive at a campsite with no vacancies.

(b) The family will experience both mechanical prob-
lems and trouble in locating a campsite with a va-
cancy but will not receive a ticket for a tra�c vio-
lation.

(c) The family will either have mechanical trouble or
arrive at a campsite with no vacancies but will not
receive a ticket for a tra�c violation.

(d) The family will not arrive at a campsite with no
vacancies.

M T

V

1

2 3

4

5 7

6
8

Figure 2.5: Venn diagram for Exercises 2.19 and 2.20.

2.3 Counting Sample Points

One of the problems that the statistician must consider and attempt to evaluate
is the element of chance associated with the occurrence of certain events when
an experiment is performed. These problems belong in the “eld of probability, a
subject to be introduced in Section 2.4. In many cases, we shall be able to solve a
probability problem by counting the number of points in the sample space without
actually listing each element. The fundamental principle of counting, often referred
to as the multiplication rule , is stated in Rule 2.1.
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Rule 2.1: If an operation can be performed inn1 ways, and if for each of these ways a second
operation can be performed inn2 ways, then the two operations can be performed
together in n1n2 ways.

Example 2.13: How many sample points are there in the sample space when a pair of dice is
thrown once?

Solution : The “rst die can land face-up in any one ofn1 = 6 ways. For each of these 6 ways,
the second die can also land face-up inn2 = 6 ways. Therefore, the pair of dice
can land in n1n2 = (6)(6) = 36 possible ways.

Example 2.14: A developer of a new subdivision o�ers prospective home buyers a choice of Tudor,
rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level
”oor plans. In how many di�erent ways can a buyer order one of these homes?

Exterior Style Floor Plan

Tu
do

r

Rustic

ColonialTraditional

Split-Level

Split-Level

Two-Story

Two-Story

Ranch

Ranch

Split-Level

Split-Level

Two-Story

Two-Story

Ranch

Ranch

Figure 2.6: Tree diagram for Example 2.14.

Solution : Sincen1 = 4 and n2 = 3, a buyer must choose from

n1n2 = (4)(3) = 12 possible homes.

The answers to the two preceding examples can be veri“ed by constructing
tree diagrams and counting the various paths along the branches. For instance,
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in Example 2.14 there will be n1 = 4 branches corresponding to the di�erent
exterior styles, and then there will be n2 = 3 branches extending from each of
these 4 branches to represent the di�erent ”oor plans. This tree diagram yields the
n1n2 = 12 choices of homes given by the paths along the branches, as illustrated
in Figure 2.6.

Example 2.15: If a 22-member club needs to elect a chair and a treasurer, how many di�erent
ways can these two to be elected?

Solution : For the chair position, there are 22 total possibilities. For each of those 22 pos-
sibilities, there are 21 possibilities to elect the treasurer. Using the multiplication
rule, we obtain n1 × n2 = 22 × 21 = 462 di�erent ways.

The multiplication rule, Rule 2.1 may be extended to cover any number of
operations. Suppose, for instance, that a customer wishes to buy a new cell phone
and can choose fromn1 = 5 brands, n2 = 5 sets of capability, and n3 = 4 colors.
These three classi“cations result inn1n2n3 = (5)(5)(4) = 100 di�erent ways for
a customer to order one of these phones. Thegeneralized multiplication rule
covering k operations is stated in the following.

Rule 2.2: If an operation can be performed inn1 ways, and if for each of these a second
operation can be performed inn2 ways, and for each of the “rst two a third
operation can be performed inn3 ways, and so forth, then the sequence ofk
operations can be performed inn1n2 · · · nk ways.

Example 2.16: Sam is going to assemble a computer by himself. He has the choice of chips from
two brands, a hard drive from four, memory from three, and an accessory bundle
from “ve local stores. How many di�erent ways can Sam order the parts?

Solution : Sincen1 = 2, n2 = 4, n3 = 3, and n4 = 5, there are

nl × n2 × n3 × n4 = 2 × 4 × 3 × 5 = 120

di�erent ways to order the parts.

Example 2.17: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and
9 if each digit can be used only once?

Solution : Since the number must be even, we have onlyn1 = 3 choices for the units position.
However, for a four-digit number the thousands position cannot be 0. Hence, we
consider the units position in two parts, 0 or not 0. If the units position is 0 (i.e.,
n1 = 1), we have n2 = 5 choices for the thousands position,n3 = 4 for the hundreds
position, and n4 = 3 for the tens position. Therefore, in this case we have a total
of

n1n2n3n4 = (1)(5)(4)(3) = 60

even four-digit numbers. On the other hand, if the units position is not 0 (i.e.,
n1 = 2), we have n2 = 4 choices for the thousands position,n3 = 4 for the hundreds
position, and n4 = 3 for the tens position. In this situation, there are a total of

n1n2n3n4 = (2)(4)(4)(3) = 96
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even four-digit numbers.
Since the above two cases are mutually exclusive, the total number of even

four-digit numbers can be calculated as 60 + 96 = 156.
Frequently, we are interested in a sample space that contains as elements all

possible orders or arrangements of a group of objects. For example, we may want
to know how many di�erent arrangements are possible for sitting 6 people around
a table, or we may ask how many di�erent orders are possible for drawing 2 lottery
tickets from a total of 20. The di�erent arrangements are called permutations .

De“nition 2.7: A permutation is an arrangement of all or part of a set of objects.

Consider the three lettersa, b, and c. The possible permutations areabc, acb,
bac, bca, cab, and cba. Thus, we see that there are 6 distinct arrangements. Using
Rule 2.2, we could arrive at the answer 6 without actually listing the di�erent
orders by the following arguments: There aren1 = 3 choices for the “rst position.
No matter which letter is chosen, there are alwaysn2 = 2 choices for the second
position. No matter which two letters are chosen for the “rst two positions, there
is only n3 = 1 choice for the last position, giving a total of

n1n2n3 = (3)(2)(1) = 6 permutations

by Rule 2.2. In general,n distinct objects can be arranged in

n(n Š 1)(n Š 2) · · · (3)(2)(1) ways.

There is a notation for such a number.

De“nition 2.8: For any non-negative integern, n!, called •n factorial,Ž is de“ned as

n! = n(n Š 1) · · · (2)(1) ,

with special case 0! = 1.

Using the argument above, we arrive at the following theorem.

Theorem 2.1: The number of permutations of n objects is n!.

The number of permutations of the four letters a, b, c, and d will be 4! = 24.
Now consider the number of permutations that are possible by taking two letters
at a time from four. These would beab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, and
dc. Using Rule 2.1 again, we have two positions to “ll, with n1 = 4 choices for the
“rst and then n2 = 3 choices for the second, for a total of

n1n2 = (4)(3) = 12

permutations. In general, n distinct objects taken r at a time can be arranged in

n(n Š 1)(n Š 2) · · · (n Š r + 1)

ways. We represent this product by the symbol

n Pr =
n!

(n Š r )!
.
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As a result, we have the theorem that follows.

Theorem 2.2: The number of permutations of n distinct objects taken r at a time is

n Pr =
n!

(n Š r )!
.

Example 2.18: In one year, three awards (research, teaching, and service) will be given to a class
of 25 graduate students in a statistics department. If each student can receive at
most one award, how many possible selections are there?

Solution : Since the awards are distinguishable, it is a permutation problem. The total
number of sample points is

25P3 =
25!

(25 Š 3)!
=

25!
22!

= (25)(24)(23) = 13 , 800.

Example 2.19: A president and a treasurer are to be chosen from a student club consisting of 50
people. How many di�erent choices of o�cers are possible if

(a) there are no restrictions;

(b) A will serve only if he is president;

(c) B and C will serve together or not at all;

(d) D and E will not serve together?

Solution : (a) The total number of choices of o�cers, without any restrictions, is

50P2 =
50!
48!

= (50)(49) = 2450 .

(b) Since A will serve only if he is president, we have two situations here: (i)A is
selected as the president, which yields 49 possible outcomes for the treasurer•s
position, or (ii) o�cers are selected from the remaining 49 people without A,
which has the number of choices49P2 = (49)(48) = 2352. Therefore, the total
number of choices is 49 + 2352 = 2401.

(c) The number of selections whenB and C serve together is 2. The number of
selections when bothB and C are not chosen is48P2 = 2256. Therefore, the
total number of choices in this situation is 2 + 2256 = 2258.

(d) The number of selections whenD serves as an o�cer but not E is (2)(48) =
96, where 2 is the number of positionsD can take and 48 is the number of
selections of the other o�cer from the remaining people in the club except
E . The number of selections whenE serves as an o�cer but not D is also
(2)(48) = 96. The number of selections when bothD and E are not chosen
is 48P2 = 2256. Therefore, the total number of choices is (2)(96) + 2256 =
2448. This problem also has another short solution: SinceD and E can only
serve together in 2 ways, the answer is 2450Š 2 = 2448.
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Permutations that occur by arranging objects in a circle are calledcircular
permutations . Two circular permutations are not considered di�erent unless
corresponding objects in the two arrangements are preceded or followed by a dif-
ferent object as we proceed in a clockwise direction. For example, if 4 people are
playing bridge, we do not have a new permutation if they all move one position in
a clockwise direction. By considering one person in a “xed position and arranging
the other three in 3! ways, we “nd that there are 6 distinct arrangements for the
bridge game.

Theorem 2.3: The number of permutations of n objects arranged in a circle is (n Š 1)!.

So far we have considered permutations of distinct objects. That is, all the
objects were completely di�erent or distinguishable. Obviously, if the letters b and
c are both equal to x, then the 6 permutations of the letters a, b, and c become
axx, axx, xax, xax, xxa, and xxa, of which only 3 are distinct. Therefore, with 3
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 di�erent
letters a, b, c, and d, we have 24 distinct permutations. If we let a = b = x and
c = d = y, we can list only the following distinct permutations: xxyy , xyxy , yxxy ,
yyxx , xyyx , and yxyx . Thus, we have 4!/ (2! 2!) = 6 distinct permutations.

Theorem 2.4: The number of distinct permutations of n things of which n1 are of one kind,n2

of a second kind,. . . , nk of a kth kind is

n!
n1!n2! · · · nk !

.

Example 2.20: In a college football training session, the defensive coordinator needs to have 10
players standing in a row. Among these 10 players, there are 1 freshman, 2 sopho-
mores, 4 juniors, and 3 seniors. How many di�erent ways can they be arranged in
a row if only their class level will be distinguished?

Solution : Directly using Theorem 2.4, we “nd that the total number of arrangements is

10!
1! 2! 4! 3!

= 12, 600.

Often we are concerned with the number of ways of partitioning a set ofn
objects into r subsets calledcells . A partition has been achieved if the intersection
of every possible pair of ther subsets is the empty set� and if the union of all
subsets gives the original set. The order of the elements within a cell is of no
importance. Consider the set{ a, e, i, o, u} . The possible partitions into two cells
in which the “rst cell contains 4 elements and the second cell 1 element are

{ (a, e, i, o), (u)} , { (a, i, o, u), (e)} , { (e, i, o, u), (a)} , { (a, e, o, u), (i )} , { (a, e, i, u), (o)} .

We see that there are 5 ways to partition a set of 4 elements into two subsets, or
cells, containing 4 elements in the “rst cell and 1 element in the second.
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The number of partitions for this illustration is denoted by the symbol
�

5
4, 1

�
=

5!
4! 1!

= 5 ,

where the top number represents the total number of elements and the bottom
numbers represent the number of elements going into each cell. We state this more
generally in Theorem 2.5.

Theorem 2.5: The number of ways of partitioning a set ofn objects into r cells with n1 elements
in the “rst cell, n2 elements in the second, and so forth, is

�
n

n1, n2, . . . , nr

�
=

n!
n1!n2! · · · nr !

,

where n1 + n2 + · · · + nr = n.

Example 2.21: In how many ways can 7 graduate students be assigned to 1 triple and 2 double
hotel rooms during a conference?

Solution : The total number of possible partitions would be
�

7
3, 2, 2

�
=

7!
3! 2! 2!

= 210.

In many problems, we are interested in the number of ways of selectingr objects
from n without regard to order. These selections are calledcombinations . A
combination is actually a partition with two cells, the one cell containing the r
objects selected and the other cell containing the (n Š r ) objects that are left. The
number of such combinations, denoted by

�
n

r, n Š r

�
, is usually shortened to

�
n
r

�
,

since the number of elements in the second cell must ben Š r .

Theorem 2.6: The number of combinations ofn distinct objects taken r at a time is
�

n
r

�
=

n!
r !(n Š r )!

.

Example 2.22: A young boy asks his mother to get 5 Game-BoyTM cartridges from his collection
of 10 arcade and 5 sports games. How many ways are there that his mother can
get 3 arcade and 2 sports games?

Solution : The number of ways of selecting 3 cartridges from 10 is
�

10
3

�
=

10!
3! (10Š 3)!

= 120.

The number of ways of selecting 2 cartridges from 5 is
�

5
2

�
=

5!
2! 3!

= 10.
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Using the multiplication rule (Rule 2.1) with n1 = 120 and n2 = 10, we have
(120)(10) = 1200 ways.

Example 2.23: How many di�erent letter arrangements can be made from the letters in the word
STATISTICS ?

Solution : Using the same argument as in the discussion for Theorem 2.6, in this example we
can actually apply Theorem 2.5 to obtain

�
10

3, 3, 2, 1, 1

�
=

10!
3! 3! 2! 1! 1!

= 50, 400.

Here we have 10 total letters, with 2 letters (S, T) appearing 3 times each, letter
I appearing twice, and lettersA and C appearing once each. On the other hand,
this result can be directly obtained by using Theorem 2.4.

Exercises

2.21 Registrants at a large convention are o�ered 6
sightseeing tours on each of 3 days. In how many
ways can a person arrange to go on a sightseeing tour
planned by this convention?

2.22 In a medical study, patients are classi“ed in 8
ways according to whether they have blood type AB + ,
AB Š , A+ , AŠ , B + , B Š , O+ , or OŠ , and also accord-
ing to whether their blood pressure is low, normal, or
high. Find the number of ways in which a patient can
be classi“ed.

2.23 If an experiment consists of throwing a die and
then drawing a letter at random from the English
alphabet, how many points are there in the sample
space?

2.24 Students at a private liberal arts college are clas-
si“ed as being freshmen, sophomores, juniors, or se-
niors, and also according to whether they are male or
female. Find the total number of possible classi“ca-
tions for the students of that college.

2.25 A certain brand of shoes comes in 5 di�erent
styles, with each style available in 4 distinct colors. If
the store wishes to display pairs of these shoes showing
all of its various styles and colors, how many di�erent
pairs will the store have on display?

2.26 A California study concluded that following 7
simple health rules can extend a man•s life by 11 years
on the average and a woman•s life by 7 years. These
7 rules are as follows: no smoking, get regular exer-
cise, use alcohol only in moderation, get 7 to 8 hours
of sleep, maintain proper weight, eat breakfast, and do

not eat between meals. In how many ways can a person
adopt 5 of these rules to follow
(a) if the person presently violates all 7 rules?
(b) if the person never drinks and always eats break-

fast?

2.27 A developer of a new subdivision o�ers a
prospective home buyer a choice of 4 designs, 3 di�er-
ent heating systems, a garage or carport, and a patio or
screened porch. How many di�erent plans are available
to this buyer?

2.28 A drug for the relief of asthma can be purchased
from 5 di�erent manufacturers in liquid, tablet, or
capsule form, all of which come in regular and extra
strength. How many di�erent ways can a doctor pre-
scribe the drug for a patient su�ering from asthma?

2.29 In a fuel economy study, each of 3 race cars is
tested using 5 di�erent brands of gasoline at 7 test sites
located in di�erent regions of the country. If 2 drivers
are used in the study, and test runs are made once un-
der each distinct set of conditions, how many test runs
are needed?

2.30 In how many di�erent ways can a true-false test
consisting of 9 questions be answered?

2.31 A witness to a hit-and-run accident told the po-
lice that the license number contained the letters RLH
followed by 3 digits, the “rst of which was a 5. If
the witness cannot recall the last 2 digits, but is cer-
tain that all 3 digits are di�erent, “nd the maximum
number of automobile registrations that the police may
have to check.
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2.32 (a) In how many ways can 6 people be lined up
to get on a bus?

(b) If 3 speci“c persons, among 6, insist on following
each other, how many ways are possible?

(c) If 2 speci“c persons, among 6, refuse to follow each
other, how many ways are possible?

2.33 If a multiple-choice test consists of 5 questions,
each with 4 possible answers of which only 1 is correct,

(a) in how many di�erent ways can a student check o�
one answer to each question?

(b) in how many ways can a student check o� one
answer to each question and get all the answers
wrong?

2.34 (a) How many distinct permutations can be
made from the letters of the word COLUMNS ?

(b) How many of these permutations start with the let-
ter M ?

2.35 A contractor wishes to build 9 houses, each dif-
ferent in design. In how many ways can he place these
houses on a street if 6 lots are on one side of the street
and 3 lots are on the opposite side?

2.36 (a) How many three-digit numbers can be
formed from the digits 0, 1, 2, 3, 4, 5, and 6 if
each digit can be used only once?

(b) How many of these are odd numbers?
(c) How many are greater than 330?

2.37 In how many ways can 4 boys and 5 girls sit in
a row if the boys and girls must alternate?

2.38 Four married couples have bought 8 seats in the
same row for a concert. In how many di�erent ways
can they be seated
(a) with no restrictions?
(b) if each couple is to sit together?

(c) if all the men sit together to the right of all the
women?

2.39 In a regional spelling bee, the 8 “nalists consist
of 3 boys and 5 girls. Find the number of sample points
in the sample spaceS for the number of possible orders
at the conclusion of the contest for
(a) all 8 “nalists;
(b) the “rst 3 positions.

2.40 In how many ways can 5 starting positions on a
basketball team be “lled with 8 men who can play any
of the positions?

2.41 Find the number of ways that 6 teachers can
be assigned to 4 sections of an introductory psychol-
ogy course if no teacher is assigned to more than one
section.

2.42 Three lottery tickets for “rst, second, and third
prizes are drawn from a group of 40 tickets. Find the
number of sample points in S for awarding the 3 prizes
if each contestant holds only 1 ticket.

2.43 In how many ways can 5 di�erent trees be
planted in a circle?

2.44 In how many ways can a caravan of 8 covered
wagons from Arizona be arranged in a circle?

2.45 How many distinct permutations can be made
from the letters of the word INF INIT Y ?

2.46 In how many ways can 3 oaks, 4 pines, and 2
maples be arranged along a property line if one does
not distinguish among trees of the same kind?

2.47 How many ways are there to select 3 candidates
from 8 equally quali“ed recent graduates for openings
in an accounting “rm?

2.48 How many ways are there that no two students
will have the same birth date in a class of size 60?

2.4 Probability of an Event

Perhaps it was humankind•s unquenchable thirst for gambling that led to the early
development of probability theory. In an e�ort to increase their winnings, gam-
blers called upon mathematicians to provide optimum strategies for various games
of chance. Some of the mathematicians providing these strategies were Pascal,
Leibniz, Fermat, and James Bernoulli. As a result of this development of prob-
ability theory, statistical inference, with all its predictions and generalizations,
has branched out far beyond games of chance to encompass many other “elds as-
sociated with chance occurrences, such as politics, business, weather forecasting,
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and scienti“c research. For these predictions and generalizations to be reasonably
accurate, an understanding of basic probability theory is essential.

What do we mean when we make the statement •John will probably win the
tennis match,Ž or •I have a “fty-“fty chance of getting an even number when a
die is tossed,Ž or •The university is not likely to win the football game tonight,Ž
or •Most of our graduating class will likely be married within 3 yearsŽ? In each
case, we are expressing an outcome of which we are not certain, but owing to past
information or from an understanding of the structure of the experiment, we have
some degree of con“dence in the validity of the statement.

Throughout the remainder of this chapter, we consider only those experiments
for which the sample space contains a “nite number of elements. The likelihood of
the occurrence of an event resulting from such a statistical experiment is evaluated
by means of a set of real numbers, calledweights or probabilities , ranging from
0 to 1. To every point in the sample space we assign a probability such that the
sum of all probabilities is 1. If we have reason to believe that a certain sample
point is quite likely to occur when the experiment is conducted, the probability
assigned should be close to 1. On the other hand, a probability closer to 0 is
assigned to a sample point that is not likely to occur. In many experiments, such
as tossing a coin or a die, all the sample points have the same chance of occurring
and are assigned equal probabilities. For points outside the sample space, that is,
for simple events that cannot possibly occur, we assign a probability of 0.

To “nd the probability of an event A, we sum all the probabilities assigned to
the sample points in A. This sum is called the probability of A and is denoted
by P(A).

De“nition 2.9: The probability of an event A is the sum of the weights of all sample points in
A. Therefore,

0 � P(A) � 1, P(� ) = 0 , and P(S) = 1 .

Furthermore, if A1, A2, A3, . . . is a sequence of mutually exclusive events, then

P(A1 � A2 � A3 � · · · ) = P(A1) + P(A2) + P(A3) + · · · .

Example 2.24: A coin is tossed twice. What is the probability that at least 1 head occurs?
Solution : The sample space for this experiment is

S = { HH, HT, TH, TT } .

If the coin is balanced, each of these outcomes is equally likely to occur. Therefore,
we assign a probability of � to each sample point. Then 4� = 1, or � = 1 / 4. If A
represents the event of at least 1 head occurring, then

A = { HH, HT, TH } and P(A) =
1
4

+
1
4

+
1
4

=
3
4

.

Example 2.25: A die is loaded in such a way that an even number is twice as likely to occur as an
odd number. If E is the event that a number less than 4 occurs on a single toss of
the die, “nd P(E).
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Solution : The sample space isS = { 1, 2, 3, 4, 5, 6} . We assign a probability of w to each
odd number and a probability of 2w to each even number. Since the sum of the
probabilities must be 1, we have 9w = 1 or w = 1 / 9. Hence, probabilities of 1/9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

E = { 1, 2, 3} and P(E) =
1
9

+
2
9

+
1
9

=
4
9

.

Example 2.26: In Example 2.25, let A be the event that an even number turns up and letB be
the event that a number divisible by 3 occurs. Find P(A � B ) and P(A � B ).

Solution : For the events A = { 2, 4, 6} and B = { 3, 6} , we have

A � B = { 2, 3, 4, 6} and A � B = { 6} .

By assigning a probability of 1/9 to each odd number and 2/9 to each even number,
we have

P(A � B ) =
2
9

+
1
9

+
2
9

+
2
9

=
7
9

and P(A � B ) =
2
9

.

If the sample space for an experiment containsN elements, all of which are
equally likely to occur, we assign a probability equal to 1/N to each of the N
points. The probability of any event A containing n of theseN sample points is
then the ratio of the number of elements inA to the number of elements inS.

Rule 2.3: If an experiment can result in any one ofN di�erent equally likely outcomes, and
if exactly n of these outcomes correspond to eventA, then the probability of event
A is

P(A) =
n
N

.

Example 2.27: A statistics class for engineers consists of 25 industrial, 10 mechanical, 10 electrical,
and 8 civil engineering students. If a person is randomly selected by the instruc-
tor to answer a question, “nd the probability that the student chosen is (a) an
industrial engineering major and (b) a civil engineering or an electrical engineering
major.

Solution : Denote by I , M , E , and C the students majoring in industrial, mechanical, electri-
cal, and civil engineering, respectively. The total number of students in the class
is 53, all of whom are equally likely to be selected.

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob-
ability of event I , selecting an industrial engineering major at random, is

P(I ) =
25
53

.

(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows
that

P(C � E) =
18
53

.



2.4 Probability of an Event 55

Example 2.28: In a poker hand consisting of 5 cards, “nd the probability of holding 2 aces and 3
jacks.

Solution : The number of ways of being dealt 2 aces from 4 cards is
�

4
2

�
=

4!
2! 2!

= 6 ,

and the number of ways of being dealt 3 jacks from 4 cards is
�

4
3

�
=

4!
3! 1!

= 4 .

By the multiplication rule (Rule 2.1), there are n = (6)(4) = 24 hands with 2 aces
and 3 jacks. The total number of 5-card poker hands, all of which are equally
likely, is

N =
�

52
5

�
=

52!
5! 47!

= 2 ,598,960.

Therefore, the probability of getting 2 aces and 3 jacks in a 5-card poker hand is

P(C) =
24

2, 598, 960
= 0 .9 × 10Š 5.

If the outcomes of an experiment are not equally likely to occur, the probabil-
ities must be assigned on the basis of prior knowledge or experimental evidence.
For example, if a coin is not balanced, we could estimate the probabilities of heads
and tails by tossing the coin a large number of times and recording the outcomes.
According to the relative frequency de“nition of probability, the true probabil-
ities would be the fractions of heads and tails that occur in the long run. Another
intuitive way of understanding probability is the indi�erence approach. For in-
stance, if you have a die that you believe is balanced, then using this indi�erence
approach, you determine that the probability that each of the six sides will show
up after a throw is 1/6.

To “nd a numerical value that represents adequately the probability of winning
at tennis, we must depend on our past performance at the game as well as that of
the opponent and, to some extent, our belief in our ability to win. Similarly, to
“nd the probability that a horse will win a race, we must arrive at a probability
based on the previous records of all the horses entered in the race as well as the
records of the jockeys riding the horses. Intuition would undoubtedly also play a
part in determining the size of the bet that we might be willing to wager. The
use of intuition, personal beliefs, and other indirect information in arriving at
probabilities is referred to as thesubjective de“nition of probability.

In most of the applications of probability in this book, the relative frequency
interpretation of probability is the operative one. Its foundation is the statistical
experiment rather than subjectivity, and it is best viewed as the limiting relative
frequency . As a result, many applications of probability in science and engineer-
ing must be based on experiments that can be repeated. Less objective notions of
probability are encountered when we assign probabilities based on prior informa-
tion and opinions, as in •There is a good chance that the Giants will lose the Super
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Bowl.Ž When opinions and prior information di�er from individual to individual,
subjective probability becomes the relevant resource. In Bayesian statistics (see
Chapter 18), a more subjective interpretation of probability will be used, based on
an elicitation of prior probability information.

2.5 Additive Rules

Often it is easiest to calculate the probability of some event from known prob-
abilities of other events. This may well be true if the event in question can be
represented as the union of two other events or as the complement of some event.
Several important laws that frequently simplify the computation of probabilities
follow. The “rst, called the additive rule , applies to unions of events.

Theorem 2.7: If A and B are two events, then

P(A � B ) = P(A) + P(B ) Š P(A � B ).

A BA � B

S

Figure 2.7: Additive rule of probability.

Proof : Consider the Venn diagram in Figure 2.7. TheP(A � B ) is the sum of the prob-
abilities of the sample points in A � B . Now P(A) + P(B ) is the sum of all
the probabilities in A plus the sum of all the probabilities in B . Therefore, we
have added the probabilities in (A � B ) twice. Since these probabilities add up
to P(A � B ), we must subtract this probability once to obtain the sum of the
probabilities in A � B .

Corollary 2.1: If A and B are mutually exclusive, then

P(A � B ) = P(A) + P(B ).

Corollary 2.1 is an immediate result of Theorem 2.7, since ifA and B are
mutually exclusive, A � B = 0 and then P(A � B ) = P(� ) = 0. In general, we can
write Corollary 2.2.
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Corollary 2.2: If A1, A2, . . . , An are mutually exclusive, then

P(A1 � A2 � · · · � An ) = P(A1) + P(A2) + · · · + P(An ).

A collection of events{ A1, A2, . . . , An } of a sample spaceS is called apartition
of S if A1, A2, . . . , An are mutually exclusive and A1 � A2 � · · · � An = S. Thus,
we have

Corollary 2.3: If A1, A2, . . . , An is a partition of sample spaceS, then

P(A1 � A2 � · · · � An ) = P(A1) + P(A2) + · · · + P(An ) = P(S) = 1 .

As one might expect, Theorem 2.7 extends in an analogous fashion.

Theorem 2.8: For three eventsA, B , and C,

P(A � B � C) = P(A) + P(B ) + P(C)

Š P(A � B ) Š P(A � C) Š P(B � C) + P(A � B � C).

Example 2.29: John is going to graduate from an industrial engineering department in a university
by the end of the semester. After being interviewed at two companies he likes,
he assesses that his probability of getting an o�er from companyA is 0.8, and
his probability of getting an o�er from company B is 0.6. If he believes that
the probability that he will get o�ers from both companies is 0.5, what is the
probability that he will get at least one o�er from these two companies?

Solution : Using the additive rule, we have

P(A � B ) = P(A) + P(B ) Š P(A � B ) = 0 .8 + 0.6 Š 0.5 = 0.9.

Example 2.30: What is the probability of getting a total of 7 or 11 when a pair of fair dice is
tossed?

Solution : Let A be the event that 7 occurs andB the event that 11 comes up. Now, a total
of 7 occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the
sample points. Since all sample points are equally likely, we haveP(A) = 1/6 and
P(B ) = 1/18. The events A and B are mutually exclusive, since a total of 7 and
11 cannot both occur on the same toss. Therefore,

P(A � B ) = P(A) + P(B ) =
1
6

+
1
18

=
2
9

.

This result could also have been obtained by counting the total number of points
for the event A � B , namely 8, and writing

P(A � B ) =
n
N

=
8
36

=
2
9

.
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Theorem 2.7 and its three corollaries should help the reader gain more insight
into probability and its interpretation. Corollaries 2.1 and 2.2 suggest the very
intuitive result dealing with the probability of occurrence of at least one of a number
of events, no two of which can occur simultaneously. The probability that at least
one occurs is the sum of the probabilities of occurrence of the individual events.
The third corollary simply states that the highest value of a probability (unity) is
assigned to the entire sample spaceS.

Example 2.31: If the probabilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person pur-
chasing a new automobile will choose the color green, white, red, or blue, what is
the probability that a given buyer will purchase a new automobile that comes in
one of those colors?

Solution : Let G, W, R, and B be the events that a buyer selects, respectively, a green,
white, red, or blue automobile. Since these four events are mutually exclusive, the
probability is

P(G � W � R � B ) = P(G) + P(W) + P(R) + P(B )

= 0 .09 + 0.15 + 0.21 + 0.23 = 0.68.

Often it is more di�cult to calculate the probability that an event occurs than
it is to calculate the probability that the event does not occur. Should this be the
case for some eventA, we simply “nd P(A� ) “rst and then, using Theorem 2.7,
“nd P(A) by subtraction.

Theorem 2.9: If A and A� are complementary events, then

P(A) + P(A�) = 1 .

Proof : SinceA � A� = S and the setsA and A� are disjoint,

1 = P(S) = P(A � A� ) = P(A) + P(A� ).

Example 2.32: If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and
0.07, what is the probability that he will service at least 5 cars on his next day at
work?

Solution : Let E be the event that at least 5 cars are serviced. Now,P(E) = 1 Š P(E �),
where E � is the event that fewer than 5 cars are serviced. Since

P(E � ) = 0 .12 + 0.19 = 0.31,

it follows from Theorem 2.9 that

P(E) = 1 Š 0.31 = 0.69.

Example 2.33: Suppose the manufacturer•s speci“cations for the length of a certain type of com-
puter cable are 2000± 10 millimeters. In this industry, it is known that small cable
is just as likely to be defective (not meeting speci“cations) as large cable. That is,
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the probability of randomly producing a cable with length exceeding 2010 millime-
ters is equal to the probability of producing a cable with length smaller than 1990
millimeters. The probability that the production procedure meets speci“cations is
known to be 0.99.

(a) What is the probability that a cable selected randomly is too large?

(b) What is the probability that a randomly selected cable is larger than 1990
millimeters?

Solution : Let M be the event that a cable meets speci“cations. LetS and L be the events
that the cable is too small and too large, respectively. Then

(a) P(M ) = 0 .99 and P(S) = P(L) = (1 Š 0.99)/ 2 = 0.005.

(b) Denoting by X the length of a randomly selected cable, we have

P(1990� X � 2010) = P(M ) = 0 .99.

SinceP(X � 2010) = P(L) = 0 .005,

P(X � 1990) = P(M ) + P(L) = 0 .995.

This also can be solved by using Theorem 2.9:

P(X � 1990) + P(X < 1990) = 1.

Thus, P(X � 1990) = 1 Š P(S) = 1 Š 0.005 = 0.995.

Exercises

2.49 Find the errors in each of the following state-
ments:
(a) The probabilities that an automobile salesperson

will sell 0, 1, 2, or 3 cars on any given day in Febru-
ary are, respectively, 0.19, 0.38, 0.29, and 0.15.

(b) The probability that it will rain tomorrow is 0.40,
and the probability that it will not rain tomorrow
is 0.52.

(c) The probabilities that a printer will make 0, 1, 2,
3, or 4 or more mistakes in setting a document are,
respectively, 0.19, 0.34, Š0.25, 0.43, and 0.29.

(d) On a single draw from a deck of playing cards, the
probability of selecting a heart is 1/4, the probabil-
ity of selecting a black card is 1/2, and the proba-
bility of selecting both a heart and a black card is
1/8.

2.50 Assuming that all elements of S in Exercise 2.8
on page 42 are equally likely to occur, “nd
(a) the probability of event A;
(b) the probability of event C;
(c) the probability of event A � C.

2.51 A box contains 500 envelopes, of which 75 con-
tain $100 in cash, 150 contain $25, and 275 contain
$10. An envelope may be purchased for $25. What is
the sample space for the di�erent amounts of money?
Assign probabilities to the sample points and then “nd
the probability that the “rst envelope purchased con-
tains less than $100.

2.52 Suppose that in a senior college class of 500 stu-
dents it is found that 210 smoke, 258 drink alcoholic
beverages, 216 eat between meals, 122 smoke and drink
alcoholic beverages, 83 eat between meals and drink
alcoholic beverages, 97 smoke and eat between meals,
and 52 engage in all three of these bad health practices.
If a member of this senior class is selected at random,
“nd the probability that the student
(a) smokes but does not drink alcoholic beverages;
(b) eats between meals and drinks alcoholic beverages

but does not smoke;
(c) neither smokes nor eats between meals.

2.53 The probability that an American industry will
locate in Shanghai, China, is 0.7, the probability that
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it will locate in Beijing, China, is 0.4, and the proba-
bility that it will locate in either Shanghai or Beijing or
both is 0.8. What is the probability that the industry
will locate
(a) in both cities?
(b) in neither city?

2.54 From past experience, a stockbroker believes
that under present economic conditions a customer will
invest in tax-free bonds with a probability of 0.6, will
invest in mutual funds with a probability of 0.3, and
will invest in both tax-free bonds and mutual funds
with a probability of 0.15. At this time, “nd the prob-
ability that a customer will invest
(a) in either tax-free bonds or mutual funds;
(b) in neither tax-free bonds nor mutual funds.

2.55 If each coded item in a catalog begins with 3
distinct letters followed by 4 distinct nonzero digits,
“nd the probability of randomly selecting one of these
coded items with the “rst letter a vowel and the last
digit even.

2.56 An automobile manufacturer is concerned about
a possible recall of its best-selling four-door sedan. If
there were a recall, there is a probability of 0.25 of a
defect in the brake system, 0.18 of a defect in the trans-
mission, 0.17 of a defect in the fuel system, and 0.40 of
a defect in some other area.
(a) What is the probability that the defect is the brakes

or the fueling system if the probability of defects in
both systems simultaneously is 0.15?

(b) What is the probability that there are no defects
in either the brakes or the fueling system?

2.57 If a letter is chosen at random from the English
alphabet, “nd the probability that the letter
(a) is a vowel exclusive of y;
(b) is listed somewhere ahead of the letter j ;
(c) is listed somewhere after the letter g.

2.58 A pair of fair dice is tossed. Find the probability
of getting
(a) a total of 8;
(b) at most a total of 5.

2.59 In a poker hand consisting of 5 cards, “nd the
probability of holding
(a) 3 aces;
(b) 4 hearts and 1 club.

2.60 If 3 books are picked at random from a shelf con-
taining 5 novels, 3 books of poems, and a dictionary,
what is the probability that
(a) the dictionary is selected?
(b) 2 novels and 1 book of poems are selected?

2.61 In a high school graduating class of 100 stu-
dents, 54 studied mathematics, 69 studied history, and
35 studied both mathematics and history. If one of
these students is selected at random, “nd the proba-
bility that
(a) the student took mathematics or history;
(b) the student did not take either of these subjects;
(c) the student took history but not mathematics.

2.62 Dom•s Pizza Company uses taste testing and
statistical analysis of the data prior to marketing any
new product. Consider a study involving three types
of crusts (thin, thin with garlic and oregano, and thin
with bits of cheese). Dom•s is also studying three
sauces (standard, a new sauce with more garlic, and
a new sauce with fresh basil).
(a) How many combinations of crust and sauce are in-

volved?
(b) What is the probability that a judge will get a plain

thin crust with a standard sauce for his “rst taste
test?

2.63 According to Consumer Digest (July/August
1996), the probable location of personal computers
(PC) in the home is as follows:

Adult bedroom: 0.03
Child bedroom: 0.15
Other bedroom: 0.14
O�ce or den: 0.40
Other rooms: 0.28

(a) What is the probability that a PC is in a bedroom?
(b) What is the probability that it is not in a bedroom?
(c) Suppose a household is selected at random from

households with a PC; in what room would you
expect to “nd a PC?

2.64 Interest centers around the life of an electronic
component. Suppose it is known that the probabil-
ity that the component survives for more than 6000
hours is 0.42. Suppose also that the probability that
the component survives no longer than 4000 hours is
0.04.
(a) What is the probability that the life of the compo-

nent is less than or equal to 6000 hours?
(b) What is the probability that the life is greater than

4000 hours?
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2.65 Consider the situation of Exercise 2.64. Let A
be the event that the component fails a particular test
and B be the event that the component displays strain
but does not actually fail. Event A occurs with prob-
ability 0.20, and event B occurs with probability 0.35.
(a) What is the probability that the component does

not fail the test?
(b) What is the probability that the component works

perfectly well (i.e., neither displays strain nor fails
the test)?

(c) What is the probability that the component either
fails or shows strain in the test?

2.66 Factory workers are constantly encouraged to
practice zero tolerance when it comes to accidents in
factories. Accidents can occur because the working en-
vironment or conditions themselves are unsafe. On the
other hand, accidents can occur due to carelessness
or so-called human error. In addition, the worker•s
shift, 7:00 A.M. …3:00P.M. (day shift), 3:00 P.M. …11:00
P.M. (evening shift), or 11:00 P.M. …7:00A.M. (graveyard
shift), may be a factor. During the last year, 300 acci-
dents have occurred. The percentages of the accidents
for the condition combinations are as follows:

Unsafe Human
Shift Conditions Error
Day 5% 32%
Evening 6% 25%
Graveyard 2% 30%

If an accident report is selected randomly from the 300
reports,
(a) what is the probability that the accident occurred

on the graveyard shift?
(b) what is the probability that the accident occurred

due to human error?
(c) what is the probability that the accident occurred

due to unsafe conditions?
(d) what is the probability that the accident occurred

on either the evening or the graveyard shift?

2.67 Consider the situation of Example 2.32 on page
58.
(a) What is the probability that no more than 4 cars

will be serviced by the mechanic?
(b) What is the probability that he will service fewer

than 8 cars?
(c) What is the probability that he will service either

3 or 4 cars?

2.68 Interest centers around the nature of an oven
purchased at a particular department store. It can be
either a gas or an electric oven. Consider the decisions
made by six distinct customers.
(a) Suppose that the probability is 0.40 that at most

two of these individuals purchase an electric oven.
What is the probability that at least three purchase
the electric oven?

(b) Suppose it is known that the probability that all
six purchase the electric oven is 0.007 while 0.104 is
the probability that all six purchase the gas oven.
What is the probability that at least one of each
type is purchased?

2.69 It is common in many industrial areas to use
a “lling machine to “ll boxes full of product. This
occurs in the food industry as well as other areas in
which the product is used in the home, for example,
detergent. These machines are not perfect, and indeed
they may A, “ll to speci“cation, B , under“ll, and C,
over“ll. Generally, the practice of under“lling is that
which one hopes to avoid. Let P (B ) = 0 .001 while
P (A) = 0 .990.
(a) Give P(C).
(b) What is the probability that the machine does not

under“ll?
(c) What is the probability that the machine either

over“lls or under“lls?

2.70 Consider the situation of Exercise 2.69. Suppose
50,000 boxes of detergent are produced per week and
suppose also that those under“lled are •sent back,Ž
with customers requesting reimbursement of the pur-
chase price. Suppose also that the cost of production
is known to be $4.00 per box while the purchase price
is $4.50 per box.
(a) What is the weekly pro“t under the condition of no

defective boxes?
(b) What is the loss in pro“t expected due to under-

“lling?

2.71 As the situation of Exercise 2.69 might suggest,
statistical procedures are often used for control of qual-
ity (i.e., industrial quality control). At times, the
weight of a product is an important variable to con-
trol. Speci“cations are given for the weight of a certain
packaged product, and a package is rejected if it is ei-
ther too light or too heavy. Historical data suggest that
0.95 is the probability that the product meets weight
speci“cations whereas 0.002 is the probability that the
product is too light. For each single packaged product,
the manufacturer invests $20.00 in production and the
purchase price for the consumer is $25.00.
(a) What is the probability that a package chosen ran-

domly from the production line is too heavy?
(b) For each 10,000 packages sold, what pro“t is re-

ceived by the manufacturer if all packages meet
weight speci“cation?

(c) Assuming that all defective packages are rejected
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and rendered worthless, how much is the pro“t re-
duced on 10,000 packages due to failure to meet
weight speci“cation?

2.72 Prove that

P (A� � B � ) = 1 + P(A � B ) Š P(A) Š P(B ).

2.6 Conditional Probability, Independence, and the Product
Rule

One very important concept in probability theory is conditional probability. In
some applications, the practitioner is interested in the probability structure under
certain restrictions. For instance, in epidemiology, rather than studying the chance
that a person from the general population has diabetes, it might be of more interest
to know this probability for a distinct group such as Asian women in the age range
of 35 to 50 or Hispanic men in the age range of 40 to 60. This type of probability
is called a conditional probability.

Conditional Probability

The probability of an event B occurring when it is known that some event A
has occurred is called aconditional probability and is denoted byP(B |A). The
symbol P(B |A) is usually read •the probability that B occurs given thatA occursŽ
or simply •the probability of B , given A.Ž

Consider the eventB of getting a perfect square when a die is tossed. The die
is constructed so that the even numbers are twice as likely to occur as the odd
numbers. Based on the sample spaceS = { 1, 2, 3, 4, 5, 6} , with probabilities of
1/9 and 2/9 assigned, respectively, to the odd and even numbers, the probability
of B occurring is 1/3. Now suppose that it is known that the toss of the die
resulted in a number greater than 3. We are now dealing with a reduced sample
spaceA = { 4, 5, 6} , which is a subset ofS. To “nd the probability that B occurs,
relative to the spaceA, we must “rst assign new probabilities to the elements of
A proportional to their original probabilities such that their sum is 1. Assigning a
probability of w to the odd number in A and a probability of 2w to the two even
numbers, we have 5w = 1, or w = 1 / 5. Relative to the spaceA, we “nd that B
contains the single element 4. Denoting this event by the symbolB |A, we write
B |A = { 4} , and hence

P(B |A) =
2
5

.

This example illustrates that events may have di�erent probabilities when consid-
ered relative to di�erent sample spaces.

We can also write

P(B |A) =
2
5

=
2/ 9
5/ 9

=
P(A � B )

P(A)
,

where P(A � B ) and P(A) are found from the original sample spaceS. In other
words, a conditional probability relative to a subspaceA of S may be calculated
directly from the probabilities assigned to the elements of the original sample space
S.
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De“nition 2.10: The conditional probability of B , given A, denoted by P(B |A), is de“ned by

P(B |A) =
P(A � B )

P(A)
, provided P(A) > 0.

As an additional illustration, suppose that our sample spaceS is the population
of adults in a small town who have completed the requirements for a college degree.
We shall categorize them according to gender and employment status. The data
are given in Table 2.1.

Table 2.1: Categorization of the Adults in a Small Town

Employed Unemployed Total
Male
Female

460
140

40
260

500
400

Total 600 300 900

One of these individuals is to be selected at random for a tour throughout the
country to publicize the advantages of establishing new industries in the town. We
shall be concerned with the following events:

M: a man is chosen,

E: the one chosen is employed.

Using the reduced sample spaceE, we “nd that

P(M |E) =
460
600

=
23
30

.

Let n(A) denote the number of elements in any setA. Using this notation,
since each adult has an equal chance of being selected, we can write

P(M |E) =
n(E � M )

n(E)
=

n(E � M )/n (S)
n(E)/n (S)

=
P(E � M )

P(E)
,

where P(E � M ) and P(E) are found from the original sample spaceS. To verify
this result, note that

P(E) =
600
900

=
2
3

and P(E � M ) =
460
900

=
23
45

.

Hence,

P(M |E) =
23/ 45
2/ 3

=
23
30

,

as before.

Example 2.34: The probability that a regularly scheduled ”ight departs on time is P(D) = 0 .83;
the probability that it arrives on time is P(A) = 0 .82; and the probability that it
departs and arrives on time isP(D � A) = 0 .78. Find the probability that a plane
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(a) arrives on time, given that it departed on time, and (b) departed on time, given
that it has arrived on time.

Solution : Using De“nition 2.10, we have the following.

(a) The probability that a plane arrives on time, given that it departed on time,
is

P(A|D) =
P(D � A)

P(D)
=

0.78
0.83

= 0 .94.

(b) The probability that a plane departed on time, given that it has arrived on
time, is

P(D |A) =
P(D � A)

P(A)
=

0.78
0.82

= 0 .95.
The notion of conditional probability provides the capability of reevaluating the

idea of probability of an event in light of additional information, that is, when it
is known that another event has occurred. The probability P(A|B ) is an updating
of P(A) based on the knowledge that eventB has occurred. In Example 2.34, it
is important to know the probability that the ”ight arrives on time. One is given
the information that the ”ight did not depart on time. Armed with this additional
information, one can calculate the more pertinent probability P(A|D �), that is,
the probability that it arrives on time, given that it did not depart on time. In
many situations, the conclusions drawn from observing the more important condi-
tional probability change the picture entirely. In this example, the computation of
P(A|D �) is

P(A|D � ) =
P(A � D � )

P(D � )
=

0.82Š 0.78
0.17

= 0 .24.

As a result, the probability of an on-time arrival is diminished severely in the
presence of the additional information.

Example 2.35: The concept of conditional probability has countless uses in both industrial and
biomedical applications. Consider an industrial process in the textile industry in
which strips of a particular type of cloth are being produced. These strips can be
defective in two ways, length and nature of texture. For the case of the latter, the
process of identi“cation is very complicated. It is known from historical information
on the process that 10% of strips fail the length test, 5% fail the texture test, and
only 0.8% fail both tests. If a strip is selected randomly from the process and a
quick measurement identi“es it as failing the length test, what is the probability
that it is texture defective?

Solution : Consider the events

L : length defective, T: texture defective.

Given that the strip is length defective, the probability that this strip is texture
defective is given by

P(T|L ) =
P(T � L )

P(L )
=

0.008
0.1

= 0 .08.

Thus, knowing the conditional probability provides considerably more information
than merely knowing P(T).
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Independent Events

In the die-tossing experiment discussed on page 62, we note thatP(B |A) = 2 / 5
whereasP(B ) = 1 / 3. That is, P(B |A) �= P(B ), indicating that B depends on
A. Now consider an experiment in which 2 cards are drawn in succession from an
ordinary deck, with replacement. The events are de“ned as

A: the “rst card is an ace,

B: the second card is a spade.

Since the “rst card is replaced, our sample space for both the “rst and the second
draw consists of 52 cards, containing 4 aces and 13 spades. Hence,

P(B |A) =
13
52

=
1
4

and P(B ) =
13
52

=
1
4

.

That is, P(B |A) = P(B ). When this is true, the events A and B are said to be
independent .

Although conditional probability allows for an alteration of the probability of an
event in the light of additional material, it also enables us to understand better the
very important concept of independence or, in the present context, independent
events. In the airport illustration in Example 2.34, P(A|D) di�ers from P(A).
This suggests that the occurrence ofD in”uenced A, and this is certainly expected
in this illustration. However, consider the situation where we have eventsA and
B and

P(A|B ) = P(A).

In other words, the occurrence ofB had no impact on the odds of occurrence ofA.
Here the occurrence ofA is independent of the occurrence ofB . The importance
of the concept of independence cannot be overemphasized. It plays a vital role in
material in virtually all chapters in this book and in all areas of applied statistics.

De“nition 2.11: Two events A and B are independent if and only if

P(B |A) = P(B ) or P(A|B ) = P(A),

assuming the existences of the conditional probabilities. Otherwise,A and B are
dependent .

The condition P(B |A) = P(B ) implies that P(A|B ) = P(A), and conversely.
For the card-drawing experiments, where we showed thatP(B |A) = P(B ) = 1 / 4,
we also can see thatP(A|B ) = P(A) = 1 / 13.

The Product Rule, or the Multiplicative Rule

Multiplying the formula in De“nition 2.10 by P(A), we obtain the following im-
portant multiplicative rule (or product rule ), which enables us to calculate
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the probability that two events will both occur.

Theorem 2.10: If in an experiment the events A and B can both occur, then

P(A � B ) = P(A)P(B |A), provided P(A) > 0.

Thus, the probability that both A and B occur is equal to the probability that
A occurs multiplied by the conditional probability that B occurs, given that A
occurs. Since the eventsA � B and B � A are equivalent, it follows from Theorem
2.10 that we can also write

P(A � B ) = P(B � A) = P(B )P(A|B ).

In other words, it does not matter which event is referred to asA and which event
is referred to asB .

Example 2.36: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If
2 fuses are selected at random and removed from the box in succession without
replacing the “rst, what is the probability that both fuses are defective?

Solution : We shall let A be the event that the “rst fuse is defective andB the event that the
second fuse is defective; then we interpretA � B as the event that A occurs and
then B occurs after A has occurred. The probability of “rst removing a defective
fuse is 1/4; then the probability of removing a second defective fuse from the
remaining 4 is 4/19. Hence,

P(A � B ) =
�

1
4

� �
4
19

�
=

1
19

.

Example 2.37: One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white
balls and 5 black balls. One ball is drawn from the “rst bag and placed unseen in
the second bag. What is the probability that a ball now drawn from the second
bag is black?

Solution : Let B1, B2, and W1 represent, respectively, the drawing of a black ball from bag 1,
a black ball from bag 2, and a white ball from bag 1. We are interested in the union
of the mutually exclusive eventsB1 � B2 and W1 � B2. The various possibilities
and their probabilities are illustrated in Figure 2.8. Now

P[(B1 � B2) or (W1 � B2)] = P(B1 � B2) + P(W1 � B2)

= P(B1)P(B2|B1) + P(W1)P(B2|W1)

=
�

3
7

� �
6
9

�
+

�
4
7

� �
5
9

�
=

38
63

.

If, in Example 2.36, the “rst fuse is replaced and the fuses thoroughly rear-
ranged before the second is removed, then the probability of a defective fuse on the
second selection is still 1/4; that is, P(B |A) = P(B ) and the events A and B are
independent. When this is true, we can substituteP(B ) for P(B |A) in Theorem
2.10 to obtain the following special multiplicative rule.
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Bag 1

4W, 3B

Bag 2

3W, 6B

Bag 2

4W, 5B

P(B 1 � B 2)=(3/7)(6/9)

P(B 1 � W2)=(3/7)(3/9)

P(W1 � B 2)=(4/7)(5/9)

P(W1 � W2) =(4/7)(4/9)

B
3/7

4/7
W

B
6/9

W
3/9

B
6/9

4/9
W

Figure 2.8: Tree diagram for Example 2.37.

Theorem 2.11: Two events A and B are independent if and only if

P(A � B ) = P(A)P(B ).

Therefore, to obtain the probability that two independent events will both occur,
we simply “nd the product of their individual probabilities.

Example 2.38: A small town has one “re engine and one ambulance available for emergencies. The
probability that the “re engine is available when needed is 0.98, and the probability
that the ambulance is available when called is 0.92. In the event of an injury
resulting from a burning building, “nd the probability that both the ambulance
and the “re engine will be available, assuming they operate independently.

Solution : Let A and B represent the respective events that the “re engine and the ambulance
are available. Then

P(A � B ) = P(A)P(B ) = (0 .98)(0.92) = 0.9016.

Example 2.39: An electrical system consists of four components as illustrated in Figure 2.9. The
system works if componentsA and B work and either of the componentsC or D
works. The reliability (probability of working) of each component is also shown
in Figure 2.9. Find the probability that (a) the entire system works and (b) the
componentC does not work, given that the entire system works. Assume that the
four components work independently.

Solution : In this con“guration of the system, A, B , and the subsystemC and D constitute
a serial circuit system, whereas the subsystemC and D itself is a parallel circuit
system.

(a) Clearly the probability that the entire system works can be calculated as
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follows:

P[A � B � (C � D )] = P(A)P(B )P(C � D) = P(A)P(B )[1 Š P(C� � D � )]

= P(A)P(B )[1 Š P(C�)P(D �)]

= (0 .9)(0.9)[1 Š (1 Š 0.8)(1 Š 0.8)] = 0 .7776.

The equalities above hold because of the independence among the four com-
ponents.

(b) To calculate the conditional probability in this case, notice that

P =
P(the system works but C does not work)

P(the system works)

=
P(A � B � C� � D )

P(the system works)
=

(0.9)(0.9)(1 Š 0.8)(0.8)
0.7776

= 0 .1667.

A B

C

D

0.9 0.9

0.8

0.8

Figure 2.9: An electrical system for Example 2.39.

The multiplicative rule can be extended to more than two-event situations.

Theorem 2.12: If, in an experiment, the events A1, A2, . . . , Ak can occur, then

P(A1 � A2 � · · · � Ak )

= P(A1)P(A2|A1)P(A3|A1 � A2) · · · P(Ak |A1 � A2 � · · · � AkŠ 1).

If the events A1, A2, . . . , Ak are independent, then

P(A1 � A2 � · · · � Ak ) = P(A1)P(A2) · · · P(Ak ).

Example 2.40: Three cards are drawn in succession, without replacement, from an ordinary deck
of playing cards. Find the probability that the event A1 � A2 � A3 occurs, where
A1 is the event that the “rst card is a red ace, A2 is the event that the second card
is a 10 or a jack, andA3 is the event that the third card is greater than 3 but less
than 7.

Solution : First we de“ne the events

A1: the “rst card is a red ace,

A2: the second card is a 10 or a jack,
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A3: the third card is greater than 3 but less than 7.

Now

P(A1) =
2
52

, P(A2|A1) =
8
51

, P(A3|A1 � A2) =
12
50

,

and hence, by Theorem 2.12,

P(A1 � A2 � A3) = P(A1)P(A2|A1)P(A3|A1 � A2)

=
�

2
52

� �
8
51

� �
12
50

�
=

8
5525

.

The property of independence stated in Theorem 2.11 can be extended to deal
with more than two events. Consider, for example, the case of three eventsA, B ,
and C. It is not su�cient to only have that P(A � B � C) = P(A)P(B )P(C) as a
de“nition of independence among the three. SupposeA = B and C = � , the null
set. Although A � B � C = � , which results in P(A � B � C) = 0 = P(A)P(B )P(C),
events A and B are not independent. Hence, we have the following de“nition.

De“nition 2.12: A collection of events A = { A1, . . . , An } are mutually independent if for any
subset ofA , Ai 1 , . . . , Ai k , for k � n, we have

P(Ai 1 � · · · � Ai k ) = P(Ai 1 ) · · · P(Ai k ).

Exercises

2.73 If R is the event that a convict committed armed
robbery and D is the event that the convict pushed
dope, state in words what probabilities are expressed
by
(a) P (R|D );
(b) P (D � |R);
(c) P (R� |D � ).

2.74 A class in advanced physics is composed of 10
juniors, 30 seniors, and 10 graduate students. The “nal
grades show that 3 of the juniors, 10 of the seniors, and
5 of the graduate students received anA for the course.
If a student is chosen at random from this class and is
found to have earned anA, what is the probability that
he or she is a senior?

2.75 A random sample of 200 adults are classi“ed be-
low by sex and their level of education attained.

Education Male Female
Elementary 38 45
Secondary 28 50
College 22 17

If a person is picked at random from this group, “nd
the probability that
(a) the person is a male, given that the person has a

secondary education;

(b) the person does not have a college degree, given
that the person is a female.

2.76 In an experiment to study the relationship of hy-
pertension and smoking habits, the following data are
collected for 180 individuals:

Moderate Heavy
Nonsmokers Smokers Smokers

H 21 36 30
NH 48 26 19

where H and NH in the table stand for Hypertension
and Nonhypertension, respectively. If one of these indi-
viduals is selected at random, “nd the probability that
the person is
(a) experiencing hypertension, given that the person is

a heavy smoker;
(b) a nonsmoker, given that the person is experiencing

no hypertension.

2.77 In the senior year of a high school graduating
class of 100 students, 42 studied mathematics, 68 stud-
ied psychology, 54 studied history, 22 studied both
mathematics and history, 25 studied both mathematics
and psychology, 7 studied history but neither mathe-
matics nor psychology, 10 studied all three subjects,
and 8 did not take any of the three. Randomly select
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a student from the class and “nd the probabilities of
the following events.
(a) A person enrolled in psychology takes all three sub-

jects.
(b) A person not taking psychology is taking both his-

tory and mathematics.

2.78 A manufacturer of a ”u vaccine is concerned
about the quality of its ”u serum. Batches of serum are
processed by three di�erent departments having rejec-
tion rates of 0.10, 0.08, and 0.12, respectively. The in-
spections by the three departments are sequential and
independent.
(a) What is the probability that a batch of serum sur-

vives the “rst departmental inspection but is re-
jected by the second department?

(b) What is the probability that a batch of serum is
rejected by the third department?

2.79 In USA Today (Sept. 5, 1996), the results of a
survey involving the use of sleepwear while traveling
were listed as follows:

Male Female Total
Underwear 0.220 0.024 0.244
Nightgown 0.002 0.180 0.182
Nothing 0.160 0.018 0.178
Pajamas 0.102 0.073 0.175
T-shirt 0.046 0.088 0.134
Other 0.084 0.003 0.087

(a) What is the probability that a traveler is a female
who sleeps in the nude?

(b) What is the probability that a traveler is male?
(c) Assuming the traveler is male, what is the proba-

bility that he sleeps in pajamas?
(d) What is the probability that a traveler is male if

the traveler sleeps in pajamas or a T-shirt?

2.80 The probability that an automobile being “lled
with gasoline also needs an oil change is 0.25; the prob-
ability that it needs a new oil “lter is 0.40; and the
probability that both the oil and the “lter need chang-
ing is 0.14.
(a) If the oil has to be changed, what is the probability

that a new oil “lter is needed?
(b) If a new oil “lter is needed, what is the probability

that the oil has to be changed?

2.81 The probability that a married man watches a
certain television show is 0.4, and the probability that
a married woman watches the show is 0.5. The proba-
bility that a man watches the show, given that his wife
does, is 0.7. Find the probability that
(a) a married couple watches the show;

(b) a wife watches the show, given that her husband
does;

(c) at least one member of a married couple will watch
the show.

2.82 For married couples living in a certain suburb,
the probability that the husband will vote on a bond
referendum is 0.21, the probability that the wife will
vote on the referendum is 0.28, and the probability that
both the husband and the wife will vote is 0.15. What
is the probability that
(a) at least one member of a married couple will vote?
(b) a wife will vote, given that her husband will vote?
(c) a husband will vote, given that his wife will not

vote?

2.83 The probability that a vehicle entering the Lu-
ray Caverns has Canadian license plates is 0.12; the
probability that it is a camper is 0.28; and the proba-
bility that it is a camper with Canadian license plates
is 0.09. What is the probability that
(a) a camper entering the Luray Caverns has Canadian

license plates?
(b) a vehicle with Canadian license plates entering the

Luray Caverns is a camper?
(c) a vehicle entering the Luray Caverns does not have

Canadian plates or is not a camper?

2.84 The probability that the head of a household is
home when a telemarketing representative calls is 0.4.
Given that the head of the house is home, the proba-
bility that goods will be bought from the company is
0.3. Find the probability that the head of the house is
home and goods are bought from the company.

2.85 The probability that a doctor correctly diag-
noses a particular illness is 0.7. Given that the doctor
makes an incorrect diagnosis, the probability that the
patient “les a lawsuit is 0.9. What is the probability
that the doctor makes an incorrect diagnosis and the
patient sues?

2.86 In 1970, 11% of Americans completed four years
of college; 43% of them were women. In 1990, 22% of
Americans completed four years of college; 53% of them
were women (Time , Jan. 19, 1996).
(a) Given that a person completed four years of college

in 1970, what is the probability that the person was
a woman?

(b) What is the probability that a woman “nished four
years of college in 1990?

(c) What is the probability that a man had not “nished
college in 1990?
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2.87 A real estate agent has 8 master keys to open
several new homes. Only 1 master key will open any
given house. If 40% of these homes are usually left
unlocked, what is the probability that the real estate
agent can get into a speci“c home if the agent selects
3 master keys at random before leaving the o�ce?

2.88 Before the distribution of certain statistical soft-
ware, every fourth compact disk (CD) is tested for ac-
curacy. The testing process consists of running four
independent programs and checking the results. The
failure rates for the four testing programs are, respec-
tively, 0.01, 0.03, 0.02, and 0.01.
(a) What is the probability that a CD was tested and

failed any test?
(b) Given that a CD was tested, what is the probability

that it failed program 2 or 3?
(c) In a sample of 100, how many CDs would you ex-

pect to be rejected?
(d) Given that a CD was defective, what is the proba-

bility that it was tested?

2.89 A town has two “re engines operating indepen-
dently. The probability that a speci“c engine is avail-
able when needed is 0.96.
(a) What is the probability that neither is available

when needed?
(b) What is the probability that a “re engine is avail-

able when needed?

2.90 Pollution of the rivers in the United States has
been a problem for many years. Consider the following
events:

A : the river is polluted,
B : a sample of water tested detects pollution,
C : “shing is permitted.

Assume P(A) = 0 .3, P (B |A) = 0 .75, P (B |A� ) = 0 .20,
P (C|A � B ) = 0 .20, P (C|A� � B ) = 0 .15, P (C|A � B � ) =
0.80, and P(C|A� � B � ) = 0 .90.
(a) Find P(A � B � C).
(b) Find P(B � � C).
(c) Find P(C).
(d) Find the probability that the river is polluted, given

that “shing is permitted and the sample tested did
not detect pollution.

2.91 Find the probability of randomly selecting 4
good quarts of milk in succession from a cooler con-
taining 20 quarts of which 5 have spoiled, by using
(a) the “rst formula of Theorem 2.12 on page 68;
(b) the formulas of Theorem 2.6 and Rule 2.3 on pages

50 and 54, respectively.

2.92 Suppose the diagram of an electrical system is
as given in Figure 2.10. What is the probability that
the system works? Assume the components fail inde-
pendently.

2.93 A circuit system is given in Figure 2.11. Assume
the components fail independently.
(a) What is the probability that the entire system

works?
(b) Given that the system works, what is the probabil-

ity that the component A is not working?

2.94 In the situation of Exercise 2.93, it is known that
the system does not work. What is the probability that
the component A also does not work?

DA

B

C

0.90.95

0.7

0.8

Figure 2.10: Diagram for Exercise 2.92.

A B

C D E

0.7 0.7

0.8 0.8 0.8

Figure 2.11: Diagram for Exercise 2.93.
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2.7 Bayes• Rule

Bayesian statistics is a collection of tools that is used in a special form of statistical
inference which applies in the analysis of experimental data in many practical
situations in science and engineering. Bayes• rule is one of the most important
rules in probability theory. It is the foundation of Bayesian inference, which will
be discussed in Chapter 18.

Total Probability

Let us now return to the illustration of Section 2.6, where an individual is being
selected at random from the adults of a small town to tour the country and publicize
the advantages of establishing new industries in the town. Suppose that we are
now given the additional information that 36 of those employed and 12 of those
unemployed are members of the Rotary Club. We wish to “nd the probability of
the event A that the individual selected is a member of the Rotary Club. Referring
to Figure 2.12, we can writeA as the union of the two mutually exclusive events
E � A and E � � A. Hence,A = ( E � A) � (E � � A), and by Corollary 2.1 of Theorem
2.7, and then Theorem 2.10, we can write

P(A) = P[(E � A) � (E � � A)] = P(E � A) + P(E � � A)

= P(E)P(A|E) + P(E � )P(A|E � ).

E�E A

E � A

E� � A

Figure 2.12: Venn diagram for the eventsA, E , and E � .

The data of Section 2.6, together with the additional data given above for the set
A, enable us to compute

P(E) =
600
900

=
2
3

, P(A|E) =
36
600

=
3
50

,

and

P(E � ) =
1
3

, P(A|E � ) =
12
300

=
1
25

.

If we display these probabilities by means of the tree diagram of Figure 2.13, where
the “rst branch yields the probability P(E)P(A|E) and the second branch yields
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E' P(A|E)� � 1/25 A'
P(E')P(A|E')

P(E)P(A|E)
P(A|E) = 3/50

P(E
) =

 2
/3

E A

P(E') = 1/3

Figure 2.13: Tree diagram for the data on page 63, using additional information
on page 72.

the probability P(E � )P(A|E � ), it follows that

P(A) =
�

2
3

� �
3
50

�
+

�
1
3

� �
1
25

�
=

4
75

.

A generalization of the foregoing illustration to the case where the sample space
is partitioned into k subsets is covered by the following theorem, sometimes called
the theorem of total probability or the rule of elimination .

Theorem 2.13: If the events B1, B2, . . . , Bk constitute a partition of the sample spaceS such that
P(Bi ) �= 0 for i = 1 , 2, . . . , k, then for any event A of S,

P(A) =
k�

i =1

P(Bi � A) =
k�

i =1

P(Bi )P(A|Bi ).

A

B1

B2

B3

B4 B5

ƒ

Figure 2.14: Partitioning the sample spaceS.
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Proof : Consider the Venn diagram of Figure 2.14. The eventA is seen to be the union of
the mutually exclusive events

B1 � A, B 2 � A, . . . , B k � A;

that is,

A = ( B1 � A) � (B2 � A) � · · · � (Bk � A).

Using Corollary 2.2 of Theorem 2.7 and Theorem 2.10, we have

P(A) = P[(B1 � A) � (B2 � A) � · · · � (Bk � A)]

= P(B1 � A) + P(B2 � A) + · · · + P(Bk � A)

=
k�

i =1

P(Bi � A)

=
k�

i =1

P(Bi )P(A|Bi ).

Example 2.41: In a certain assembly plant, three machines,B1, B2, and B3, make 30%, 45%, and
25%, respectively, of the products. It is known from past experience that 2%, 3%,
and 2% of the products made by each machine, respectively, are defective. Now,
suppose that a “nished product is randomly selected. What is the probability that
it is defective?

Solution : Consider the following events:

A: the product is defective,

B1: the product is made by machineB1,

B2: the product is made by machineB2,

B3: the product is made by machineB3.

Applying the rule of elimination, we can write

P(A) = P(B1)P(A|B1) + P(B2)P(A|B2) + P(B3)P(A|B3).

Referring to the tree diagram of Figure 2.15, we “nd that the three branches give
the probabilities

P(B1)P(A|B1) = (0 .3)(0.02) = 0.006,

P(B2)P(A|B2) = (0 .45)(0.03) = 0.0135,

P(B3)P(A|B3) = (0 .25)(0.02) = 0.005,

and hence

P(A) = 0 .006 + 0.0135 + 0.005 = 0.0245.
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A 

P(A | B 1 ) = 0.02

P(A | B 3 ) = 0.02 

P(A | B 2 ) = 0.03 P(B 2 ) = 0.45 

B 1 

B 2 

B 3 

A 

A P(B
 1 

) =
 0

.3
 

P(B 3 ) = 0.25 

Figure 2.15: Tree diagram for Example 2.41.

Bayes• Rule

Instead of asking for P(A) in Example 2.41, by the rule of elimination, suppose
that we now consider the problem of “nding the conditional probability P(Bi |A).
In other words, suppose that a product was randomly selected and it is defective.
What is the probability that this product was made by machine Bi ? Questions of
this type can be answered by using the following theorem, calledBayes• rule :

Theorem 2.14: (Bayes• Rule) If the events B1, B2, . . . , Bk constitute a partition of the sample
spaceS such that P(Bi ) �= 0 for i = 1 , 2, . . . , k, then for any event A in S such
that P(A) �= 0,

P(Br |A) =
P(Br � A)

k�

i =1
P(Bi � A)

=
P(Br )P(A|Br )

k�

i =1
P(Bi )P(A|Bi )

for r = 1 , 2, . . . , k.

Proof : By the de“nition of conditional probability,

P(Br |A) =
P(Br � A)

P(A)
,

and then using Theorem 2.13 in the denominator, we have

P(Br |A) =
P(Br � A)

k�

i =1
P(Bi � A)

=
P(Br )P(A|Br )

k�

i =1
P(Bi )P(A|Bi )

,

which completes the proof.

Example 2.42: With reference to Example 2.41, if a product was chosen randomly and found to
be defective, what is the probability that it was made by machineB3?

Solution : Using Bayes• rule to write

P(B3|A) =
P(B3)P(A|B3)

P(B1)P(A|B1) + P(B2)P(A|B2) + P(B3)P(A|B3)
,
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and then substituting the probabilities calculated in Example 2.41, we have

P(B3|A) =
0.005

0.006 + 0.0135 + 0.005
=

0.005
0.0245

=
10
49

.

In view of the fact that a defective product was selected, this result suggests that
it probably was not made by machineB3.

Example 2.43: A manufacturing “rm employs three analytical plans for the design and devel-
opment of a particular product. For cost reasons, all three are used at varying
times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products,
respectively. The defect rate is di�erent for the three procedures as follows:

P(D |P1) = 0 .01, P(D |P2) = 0 .03, P(D |P3) = 0 .02,

whereP(D |Pj ) is the probability of a defective product, given plan j . If a random
product was observed and found to be defective, which plan was most likely used
and thus responsible?

Solution : From the statement of the problem

P(P1) = 0 .30, P(P2) = 0 .20, and P(P3) = 0 .50,

we must “nd P(Pj |D ) for j = 1 , 2, 3. Bayes• rule (Theorem 2.14) shows

P(P1|D ) =
P(P1)P(D |P1)

P(P1)P(D |P1) + P(P2)P(D |P2) + P(P3)P(D |P3)

=
(0.30)(0.01)

(0.3)(0.01) + (0 .20)(0.03) + (0 .50)(0.02)
=

0.003
0.019

= 0 .158.

Similarly,

P(P2|D ) =
(0.03)(0.20)

0.019
= 0 .316 andP(P3|D ) =

(0.02)(0.50)
0.019

= 0 .526.

The conditional probability of a defect given plan 3 is the largest of the three; thus
a defective for a random product is most likely the result of the use of plan 3.

Using Bayes• rule, a statistical methodology called the Bayesian approach has
attracted a lot of attention in applications. An introduction to the Bayesian method
will be discussed in Chapter 18.

Exercises

2.95 In a certain region of the country it is known
from past experience that the probability of selecting
an adult over 40 years of age with cancer is 0.05. If
the probability of a doctor correctly diagnosing a per-
son with cancer as having the disease is 0.78 and the
probability of incorrectly diagnosing a person without
cancer as having the disease is 0.06, what is the prob-

ability that an adult over 40 years of age is diagnosed
as having cancer?

2.96 Police plan to enforce speed limits by using radar
traps at four di�erent locations within the city limits.
The radar traps at each of the locations L 1, L 2, L 3,
and L 4 will be operated 40%, 30%, 20%, and 30% of
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the time. If a person who is speeding on her way to
work has probabilities of 0.2, 0.1, 0.5, and 0.2, respec-
tively, of passing through these locations, what is the
probability that she will receive a speeding ticket?

2.97 Referring to Exercise 2.95, what is the probabil-
ity that a person diagnosed as having cancer actually
has the disease?

2.98 If the person in Exercise 2.96 received a speed-
ing ticket on her way to work, what is the probability
that she passed through the radar trap located at L 2?

2.99 Suppose that the four inspectors at a “lm fac-
tory are supposed to stamp the expiration date on each
package of “lm at the end of the assembly line. John,
who stamps 20% of the packages, fails to stamp the
expiration date once in every 200 packages; Tom, who
stamps 60% of the packages, fails to stamp the expira-
tion date once in every 100 packages; Je�, who stamps
15% of the packages, fails to stamp the expiration date
once in every 90 packages; and Pat, who stamps 5% of
the packages, fails to stamp the expiration date once
in every 200 packages. If a customer complains that
her package of “lm does not show the expiration date,
what is the probability that it was inspected by John?

2.100 A regional telephone company operates three
identical relay stations at di�erent locations. During a

one-year period, the number of malfunctions reported
by each station and the causes are shown below.

Station A B C
Problems with electricity supplied 2 1 1
Computer malfunction 4 3 2
Malfunctioning electrical equipment 5 4 2
Caused by other human errors 7 7 5

Suppose that a malfunction was reported and it was
found to be caused by other human errors. What is
the probability that it came from station C?

2.101 A paint-store chain produces and sells latex
and semigloss paint. Based on long-range sales, the
probability that a customer will purchase latex paint is
0.75. Of those that purchase latex paint, 60% also pur-
chase rollers. But only 30% of semigloss paint buyers
purchase rollers. A randomly selected buyer purchases
a roller and a can of paint. What is the probability
that the paint is latex?

2.102 Denote by A, B , and C the events that a grand
prize is behind doors A, B , and C, respectively. Sup-
pose you randomly picked a door, say A. The game
host opened a door, sayB , and showed there was no
prize behind it. Now the host o�ers you the option
of either staying at the door that you picked ( A) or
switching to the remaining unopened door ( C). Use
probability to explain whether you should switch or
not.

Review Exercises

2.103 A truth serum has the property that 90% of
the guilty suspects are properly judged while, of course,
10% of the guilty suspects are improperly found inno-
cent. On the other hand, innocent suspects are mis-
judged 1% of the time. If the suspect was selected
from a group of suspects of which only 5% have ever
committed a crime, and the serum indicates that he is
guilty, what is the probability that he is innocent?

2.104 An allergist claims that 50% of the patients
she tests are allergic to some type of weed. What is
the probability that
(a) exactly 3 of her next 4 patients are allergic to

weeds?
(b) none of her next 4 patients is allergic to weeds?

2.105 By comparing appropriate regions of Venn di-
agrams, verify that
(a) ( A � B ) � (A � B � ) = A;
(b) A� � (B � � C) = ( A� � B � ) � (A � � C).

2.106 The probabilities that a service station will
pump gas into 0, 1, 2, 3, 4, or 5 or more cars during
a certain 30-minute period are 0.03, 0.18, 0.24, 0.28,
0.10, and 0.17, respectively. Find the probability that
in this 30-minute period
(a) more than 2 cars receive gas;
(b) at most 4 cars receive gas;
(c) 4 or more cars receive gas.

2.107 How many bridge hands are possible contain-
ing 4 spades, 6 diamonds, 1 club, and 2 hearts?

2.108 If the probability is 0.1 that a person will make
a mistake on his or her state income tax return, “nd
the probability that
(a) four totally unrelated persons each make a mistake;
(b) Mr. Jones and Ms. Clark both make mistakes,

and Mr. Roberts and Ms. Williams do not make a
mistake.
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2.109 A large industrial “rm uses three local motels
to provide overnight accommodations for its clients.
From past experience it is known that 20% of the
clients are assigned rooms at the Ramada Inn, 50% at
the Sheraton, and 30% at the Lakeview Motor Lodge.
If the plumbing is faulty in 5% of the rooms at the Ra-
mada Inn, in 4% of the rooms at the Sheraton, and in
8% of the rooms at the Lakeview Motor Lodge, what
is the probability that
(a) a client will be assigned a room with faulty

plumbing?
(b) a person with a room having faulty plumbing was

assigned accommodations at the Lakeview Motor
Lodge?

2.110 The probability that a patient recovers from a
delicate heart operation is 0.8. What is the probability
that
(a) exactly 2 of the next 3 patients who have this op-

eration survive?
(b) all of the next 3 patients who have this operation

survive?

2.111 In a certain federal prison, it is known that
2/3 of the inmates are under 25 years of age. It is
also known that 3/5 of the inmates are male and that
5/8 of the inmates are female or 25 years of age or
older. What is the probability that a prisoner selected
at random from this prison is female and at least 25
years old?

2.112 From 4 red, 5 green, and 6 yellow apples, how
many selections of 9 apples are possible if 3 of each
color are to be selected?

2.113 From a box containing 6 black balls and 4 green
balls, 3 balls are drawn in succession, each ball being re-
placed in the box before the next draw is made. What
is the probability that
(a) all 3 are the same color?
(b) each color is represented?

2.114 A shipment of 12 television sets contains 3 de-
fective sets. In how many ways can a hotel purchase
5 of these sets and receive at least 2 of the defective
sets?

2.115 A certain federal agency employs three con-
sulting “rms ( A, B , and C) with probabilities 0.40,
0.35, and 0.25, respectively. From past experience it
is known that the probability of cost overruns for the
“rms are 0.05, 0.03, and 0.15, respectively. Suppose a
cost overrun is experienced by the agency.

(a) What is the probability that the consulting “rm
involved is company C?

(b) What is the probability that it is company A?

2.116 A manufacturer is studying the e�ects of cook-
ing temperature, cooking time, and type of cooking oil
for making potato chips. Three di�erent temperatures,
4 di�erent cooking times, and 3 di�erent oils are to be
used.
(a) What is the total number of combinations to be

studied?
(b) How many combinations will be used for each type

of oil?
(c) Discuss why permutations are not an issue in this

exercise.

2.117 Consider the situation in Exercise 2.116, and
suppose that the manufacturer can try only two com-
binations in a day.
(a) What is the probability that any given set of two

runs is chosen?
(b) What is the probability that the highest tempera-

ture is used in either of these two combinations?

2.118 A certain form of cancer is known to be found
in women over 60 with probability 0.07. A blood test
exists for the detection of the disease, but the test is
not infallible. In fact, it is known that 10% of the time
the test gives a false negative (i.e., the test incorrectly
gives a negative result) and 5% of the time the test
gives a false positive (i.e., incorrectly gives a positive
result). If a woman over 60 is known to have taken
the test and received a favorable (i.e., negative) result,
what is the probability that she has the disease?

2.119 A producer of a certain type of electronic com-
ponent ships to suppliers in lots of twenty. Suppose
that 60% of all such lots contain no defective compo-
nents, 30% contain one defective component, and 10%
contain two defective components. A lot is picked, two
components from the lot are randomly selected and
tested, and neither is defective.
(a) What is the probability that zero defective compo-

nents exist in the lot?
(b) What is the probability that one defective exists in

the lot?
(c) What is the probability that two defectives exist in

the lot?

2.120 A rare disease exists with which only 1 in 500
is a�ected. A test for the disease exists, but of course
it is not infallible. A correct positive result (patient
actually has the disease) occurs 95% of the time, while
a false positive result (patient does not have the dis-
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ease) occurs 1% of the time. If a randomly selected
individual is tested and the result is positive, what is
the probability that the individual has the disease?

2.121 A construction company employs two sales en-
gineers. Engineer 1 does the work of estimating cost
for 70% of jobs bid by the company. Engineer 2 does
the work for 30% of jobs bid by the company. It is
known that the error rate for engineer 1 is such that
0.02 is the probability of an error when he does the
work, whereas the probability of an error in the work
of engineer 2 is 0.04. Suppose a bid arrives and a se-
rious error occurs in estimating cost. Which engineer
would you guess did the work? Explain and show all
work.

2.122 In the “eld of quality control, the science of
statistics is often used to determine if a process is •out
of control.Ž Suppose the process is, indeed, out of con-
trol and 20% of items produced are defective.
(a) If three items arrive o� the process line in succes-

sion, what is the probability that all three are de-
fective?

(b) If four items arrive in succession, what is the prob-
ability that three are defective?

2.123 An industrial plant is conducting a study to
determine how quickly injured workers are back on the
job following injury. Records show that 10% of all in-
jured workers are admitted to the hospital for treat-
ment and 15% are back on the job the next day. In
addition, studies show that 2% are both admitted for
hospital treatment and back on the job the next day.
If a worker is injured, what is the probability that the
worker will either be admitted to a hospital or be back
on the job the next day or both?

2.124 A “rm is accustomed to training operators who
do certain tasks on a production line. Those operators
who attend the training course are known to be able to
meet their production quotas 90% of the time. New op-
erators who do not take the training course only meet
their quotas 65% of the time. Fifty percent of new op-
erators attend the course. Given that a new operator
meets her production quota, what is the probability
that she attended the program?

2.125 A survey of those using a particular statistical
software system indicated that 10% were dissatis“ed.

Half of those dissatis“ed purchased the system from
vendor A. It is also known that 20% of those surveyed
purchased from vendor A. Given that the software was
purchased from vendor A, what is the probability that
that particular user is dissatis“ed?

2.126 During bad economic times, industrial workers
are dismissed and are often replaced by machines. The
history of 100 workers whose loss of employment is at-
tributable to technological advances is reviewed. For
each of these individuals, it is determined if he or she
was given an alternative job within the same company,
found a job with another company in the same “eld,
found a job in a new “eld, or has been unemployed for
1 year. In addition, the union status of each worker is
recorded. The following table summarizes the results.

Union Nonunion
Same Company
New Company (same “eld)
New Field
Unemployed

40
13
4
2

15
10
11
5

(a) If the selected worker found a job with a new com-
pany in the same “eld, what is the probability that
the worker is a union member?

(b) If the worker is a union member, what is the prob-
ability that the worker has been unemployed for a
year?

2.127 There is a 50-50 chance that the queen carries
the gene of hemophilia. If she is a carrier, then each
prince has a 50-50 chance of having hemophilia inde-
pendently. If the queen is not a carrier, the prince will
not have the disease. Suppose the queen has had three
princes without the disease. What is the probability
the queen is a carrier?

2.128 Group Project : Give each student a bag of
chocolate M&Ms. Divide the students into groups of 5
or 6. Calculate the relative frequency distribution for
color of M&Ms for each group.
(a) What is your estimated probability of randomly

picking a yellow? a red?
(b) Redo the calculations for the whole classroom. Did

the estimates change?
(c) Do you believe there is an equal number of each

color in a process batch? Discuss.

2.8 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

This chapter contains the fundamental de“nitions, rules, and theorems that
provide a foundation that renders probability an important tool for evaluating
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scienti“c and engineering systems. The evaluations are often in the form of prob-
ability computations, as is illustrated in examples and exercises. Concepts such as
independence, conditional probability, Bayes• rule, and others tend to mesh nicely
to solve practical problems in which the bottom line is to produce a probability
value. Illustrations in exercises are abundant. See, for example, Exercises 2.100
and 2.101. In these and many other exercises, an evaluation of a scienti“c system
is being made judiciously from a probability calculation, using rules and de“nitions
discussed in the chapter.

Now, how does the material in this chapter relate to that in other chapters?
It is best to answer this question by looking ahead to Chapter 3. Chapter 3 also
deals with the type of problems in which it is important to calculate probabili-
ties. We illustrate how system performance depends on the value of one or more
probabilities. Once again, conditional probability and independence play a role.
However, new concepts arise which allow more structure based on the notion of a
random variable and its probability distribution. Recall that the idea of frequency
distributions was discussed brie”y in Chapter 1. The probability distribution dis-
plays, in equation form or graphically, the total information necessary to describe a
probability structure. For example, in Review Exercise 2.122 the random variable
of interest is the number of defective items, a discrete measurement. Thus, the
probability distribution would reveal the probability structure for the number of
defective items out of the number selected from the process. As the reader moves
into Chapter 3 and beyond, it will become apparent that assumptions will be re-
quired in order to determine and thus make use of probability distributions for
solving scienti“c problems.



Chapter 3

Random Variables and Probability
Distributions

3.1 Concept of a Random Variable

Statistics is concerned with making inferences about populations and population
characteristics. Experiments are conducted with results that are subject to chance.
The testing of a number of electronic components is an example of astatistical
experiment , a term that is used to describe any process by which several chance
observations are generated. It is often important to allocate a numerical description
to the outcome. For example, the sample space giving a detailed description of each
possible outcome when three electronic components are tested may be written

S = { NNN, NND, NDN, DNN, NDD, DND, DDN, DDD } ,

whereN denotes nondefective andD denotes defective. One is naturally concerned
with the number of defectives that occur. Thus, each point in the sample space will
be assigned a numerical valueof 0, 1, 2, or 3. These values are, of course, random
quantities determined by the outcome of the experiment. They may be viewed as
values assumed by therandom variable X, the number of defective items when
three electronic components are tested.

De“nition 3.1: A random variable is a function that associates a real number with each element
in the sample space.

We shall use a capital letter, sayX, to denote a random variable and its correspond-
ing small letter, x in this case, for one of its values. In the electronic component
testing illustration above, we notice that the random variable X assumes the value
2 for all elements in the subset

E = { DDN, DND, NDD }

of the sample spaceS. That is, each possible value ofX represents an event that
is a subset of the sample space for the given experiment.

81
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Example 3.1: Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the valuesy of the random
variable Y , where Y is the number of red balls, are

Sample Space y
RR 2
RB 1
BR 1
BB 0

Example 3.2: A stockroom clerk returns three safety helmets at random to three steel mill em-
ployees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample points for the possible orders
of returning the helmets, and “nd the value m of the random variable M that
represents the number of correct matches.

Solution : If S, J , and B stand for Smith•s, Jones•s, and Brown•s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB 3
SBJ 1
BJS 1
JSB 1
JBS 0
BSJ 0

In each of the two preceding examples, the sample space contains a “nite number
of elements. On the other hand, when a die is thrown until a 5 occurs, we obtain
a sample space with an unending sequence of elements,

S = { F, NF, NNF, NNNF, . . . } ,

where F and N represent, respectively, the occurrence and nonoccurrence of a 5.
But even in this experiment, the number of elements can be equated to the number
of whole numbers so that there is a “rst element, a second element, a third element,
and so on, and in this sense can be counted.

There are cases where the random variable is categorical in nature. Variables,
often called dummy variables, are used. A good illustration is the case in which
the random variable is binary in nature, as shown in the following example.

Example 3.3: Consider the simple condition in which components are arriving from the produc-
tion line and they are stipulated to be defective or not defective. De“ne the random
variable X by

X =

�
1, if the component is defective,
0, if the component is not defective.
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Clearly the assignment of 1 or 0 is arbitrary though quite convenient. This will
become clear in later chapters. The random variable for which 0 and 1 are chosen
to describe the two possible values is called aBernoulli random variable .

Further illustrations of random variables are revealed in the following examples.

Example 3.4: Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable de“ned as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
0, 1, 2, . . . , 9, 10.

Example 3.5: Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
items are observed. In that regard, let X be a random variable de“ned by the
number of items observed before a defective is found. WithN a nondefective and
D a defective, sample spaces areS = { D} given X = 1, S = { ND } given X = 2,
S = { NND } given X = 3, and so on.

Example 3.6: Interest centers around the proportion of people who respond to a certain mail
order solicitation. Let X be that proportion. X is a random variable that takes
on all valuesx for which 0 � x � 1.

Example 3.7: Let X be the random variable de“ned by the waiting time, in hours, between
successive speeders spotted by a radar unit. The random variableX takes on all
values x for which x � 0.

De“nition 3.2: If a sample space contains a “nite number of possibilities or an unending sequence
with as many elements as there are whole numbers, it is called adiscrete sample
space.

The outcomes of some statistical experiments may be neither “nite nor countable.
Such is the case, for example, when one conducts an investigation measuring the
distances that a certain make of automobile will travel over a prescribed test course
on 5 liters of gasoline. Assuming distance to be a variable measured to any degree
of accuracy, then clearly we have an in“nite number of possible distances in the
sample space that cannot be equated to the number of whole numbers. Or, if one
were to record the length of time for a chemical reaction to take place, once again
the possible time intervals making up our sample space would be in“nite in number
and uncountable. We see now that all sample spaces need not be discrete.

De“nition 3.3: If a sample space contains an in“nite number of possibilities equal to the number
of points on a line segment, it is called acontinuous sample space .

A random variable is called a discrete random variable if its set of possible
outcomes is countable. The random variables in Examples 3.1 to 3.5 are discrete
random variables. But a random variable whose set of possible values is an entire
interval of numbers is not discrete. When a random variable can take on values
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on a continuous scale, it is called acontinuous random variable . Often the
possible values of a continuous random variable are precisely the same values that
are contained in the continuous sample space. Obviously, the random variables
described in Examples 3.6 and 3.7 are continuous random variables.

In most practical problems, continuous random variables representmeasured
data, such as all possible heights, weights, temperatures, distance, or life periods,
whereas discrete random variables representcount data, such as the number of
defectives in a sample ofk items or the number of highway fatalities per year in
a given state. Note that the random variablesY and M of Examples 3.1 and 3.2
both represent count data,Y the number of red balls andM the number of correct
hat matches.

3.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability.
In the case of tossing a coin three times, the variableX , representing the number
of heads, assumes the value 2 with probability 3/8, since 3 of the 8 equally likely
sample points result in two heads and one tail. If one assumes equal weights for the
simple events in Example 3.2, the probability that no employee gets back the right
helmet, that is, the probability that M assumes the value 0, is 1/3. The possible
values m of M and their probabilities are

m 0 1 3
P(M = m) 1

3
1
2

1
6

Note that the values of m exhaust all possible cases and hence the probabilities
add to 1.

Frequently, it is convenient to represent all the probabilities of a random variable
X by a formula. Such a formula would necessarily be a function of the numerical
valuesx that we shall denote by f (x), g(x), r (x), and so forth. Therefore, we write
f (x) = P(X = x); that is, f (3) = P(X = 3). The set of ordered pairs (x, f (x)) is
called the probability function , probability mass function , or probability
distribution of the discrete random variableX .

De“nition 3.4: The set of ordered pairs (x, f (x)) is a probability function , probability mass
function , or probability distribution of the discrete random variableX if, for
each possible outcomex,

1. f (x) � 0,

2.
�

x
f (x) = 1,

3. P(X = x) = f (x).

Example 3.8: A shipment of 20 similar laptop computers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers, “nd the
probability distribution for the number of defectives.

Solution : Let X be a random variable whose valuesx are the possible numbers of defective
computers purchased by the school. Thenx can only take the numbers 0, 1, and
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2. Now

f (0) = P(X = 0) =

� 3
0

�� 17
2

�

� 20
2

� =
68
95

, f (1) = P(X = 1) =

� 3
1

�� 17
1

�

� 20
2

� =
51
190

,

f (2) = P(X = 2) =

� 3
2

�� 17
0

�

� 20
2

� =
3

190
.

Thus, the probability distribution of X is
x 0 1 2

f (x) 68
95

51
190

3
190

Example 3.9: If a car agency sells 50% of its inventory of a certain foreign car equipped with side
airbags, “nd a formula for the probability distribution of the number of cars with
side airbags among the next 4 cars sold by the agency.

Solution : Since the probability of selling an automobile with side airbags is 0.5, the 24 = 16
points in the sample space are equally likely to occur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be
done in

� 4
3

�
= 4 ways. In general, the event of sellingx models with side airbags

and 4Š x models without side airbags can occur in
� 4

x

�
ways, wherex can be 0, 1,

2, 3, or 4. Thus, the probability distribution f (x) = P(X = x) is

f (x) =
1
16

�
4
x

�
, for x = 0 , 1, 2, 3, 4.

There are many problems where we may wish to compute the probability that
the observed value of a random variableX will be less than or equal to some real
number x. Writing F (x) = P(X � x) for every real number x, we de“ne F (x) to
be the cumulative distribution function of the random variable X .

De“nition 3.5: The cumulative distribution function F (x) of a discrete random variableX
with probability distribution f (x) is

F (x) = P(X � x) =
�

t � x

f (t), for Š 	 < x < 	 .

For the random variable M , the number of correct matches in Example 3.2, we
have

F (2) = P(M � 2) = f (0) + f (1) =
1
3

+
1
2

=
5
6

.

The cumulative distribution function of M is

F (m) =

	



�




�

0, for m < 0,
1
3 , for 0 � m < 1,
5
6 , for 1 � m < 3,
1, for m � 3.
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One should pay particular notice to the fact that the cumulative distribution func-
tion is a monotone nondecreasing function de“ned not only for the values assumed
by the given random variable but for all real numbers.

Example 3.10: Find the cumulative distribution function of the random variable X in Example
3.9. Using F (x), verify that f (2) = 3 / 8.

Solution : Direct calculations of the probability distribution of Example 3.9 give f (0)= 1 / 16,
f (1) = 1 / 4, f (2)= 3 / 8, f (3)= 1 / 4, and f (4)= 1 / 16. Therefore,

F (0) = f (0) =
1
16

,

F (1) = f (0) + f (1) =
5
16

,

F (2) = f (0) + f (1) + f (2) =
11
16

,

F (3) = f (0) + f (1) + f (2) + f (3) =
15
16

,

F (4) = f (0) + f (1) + f (2) + f (3) + f (4) = 1 .

Hence,

F (x) =

	








�









�

0, for x < 0,
1

16 , for 0 � x < 1,
5

16 , for 1 � x < 2,
11
16 , for 2 � x < 3,
15
16 , for 3 � x < 4,
1 for x � 4.

Now

f (2) = F (2) Š F (1) =
11
16

Š
5
16

=
3
8

.

It is often helpful to look at a probability distribution in graphic form. One
might plot the points ( x, f (x)) of Example 3.9 to obtain Figure 3.1. By joining
the points to the x axis either with a dashed or with a solid line, we obtain a
probability mass function plot. Figure 3.1 makes it easy to see what values ofX
are most likely to occur, and it also indicates a perfectly symmetric situation in
this case.

Instead of plotting the points ( x, f (x)), we more frequently construct rectangles,
as in Figure 3.2. Here the rectangles are constructed so that their bases of equal
width are centered at each valuex and their heights are equal to the corresponding
probabilities given by f (x). The bases are constructed so as to leave no space
between the rectangles. Figure 3.2 is called aprobability histogram .

Since each base in Figure 3.2 has unit width,P(X = x) is equal to the area
of the rectangle centered atx. Even if the bases were not of unit width, we could
adjust the heights of the rectangles to give areas that would still equal the proba-
bilities of X assuming any of its valuesx. This concept of using areas to represent
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x

f (x)

0 1 2 3 4

1/16

2/16

3/16

4/16

5/16

6/16

Figure 3.1: Probability mass function plot.

0 1 2 3 4
x

f (x)

1/16

2/16

3/16

4/16

5/16

6/16

Figure 3.2: Probability histogram.

probabilities is necessary for our consideration of the probability distribution of a
continuous random variable.

The graph of the cumulative distribution function of Example 3.9, which ap-
pears as a step function in Figure 3.3, is obtained by plotting the points (x, F (x)).

Certain probability distributions are applicable to more than one physical situ-
ation. The probability distribution of Example 3.9, for example, also applies to the
random variable Y , where Y is the number of heads when a coin is tossed 4 times,
or to the random variable W , whereW is the number of red cards that occur when
4 cards are drawn at random from a deck in succession with each card replaced and
the deck shu�ed before the next drawing. Special discrete distributions that can
be applied to many di�erent experimental situations will be considered in Chapter
5.

F(x)

x

1/4

1/2

3/4

1

0 1 2 3 4

Figure 3.3: Discrete cumulative distribution function.

3.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assumingexactly any of its
values. Consequently, its probability distribution cannot be given in tabular form.
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At “rst this may seem startling, but it becomes more plausible when we consider a
particular example. Let us discuss a random variable whose values are the heights
of all people over 21 years of age. Between any two values, say 163.5 and 164.5
centimeters, or even 163.99 and 164.01 centimeters, there are an in“nite number
of heights, one of which is 164 centimeters. The probability of selecting a person
at random who is exactly 164 centimeters tall and not one of the in“nitely large
set of heights so close to 164 centimeters that you cannot humanly measure the
di�erence is remote, and thus we assign a probability of 0 to the event. This is not
the case, however, if we talk about the probability of selecting a person who is at
least 163 centimeters but not more than 165 centimeters tall. Now we are dealing
with an interval rather than a point value of our random variable.

We shall concern ourselves with computing probabilities for various intervals of
continuous random variables such asP(a < X < b ), P(W � c), and so forth. Note
that when X is continuous,

P(a < X � b) = P(a < X < b ) + P(X = b) = P(a < X < b ).
That is, it does not matter whether we include an endpoint of the interval or not.
This is not true, though, when X is discrete.

Although the probability distribution of a continuous random variable cannot
be presented in tabular form, it can be stated as a formula. Such a formula would
necessarily be a function of the numerical values of the continuous random variable
X and as such will be represented by the functional notationf (x). In dealing with
continuous variables,f (x) is usually called the probability density function , or
simply the density function , of X . SinceX is de“ned over a continuous sample
space, it is possible forf (x) to have a “nite number of discontinuities. However,
most density functions that have practical applications in the analysis of statistical
data are continuous and their graphs may take any of several forms, some of which
are shown in Figure 3.4. Because areas will be used to represent probabilities and
probabilities are positive numerical values, the density function must lie entirely
above thex axis.

(a) (b) (c) (d)

Figure 3.4: Typical density functions.

A probability density function is constructed so that the area under its curve
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bounded by the x axis is equal to 1 when computed over the range ofX for which
f (x) is de“ned. Should this range ofX be a “nite interval, it is always possible
to extend the interval to include the entire set of real numbers by de“ning f (x) to
be zero at all points in the extended portions of the interval. In Figure 3.5, the
probability that X assumes a value betweena and b is equal to the shaded area
under the density function between the ordinates atx = a and x = b, and from
integral calculus is given by

P(a < X < b ) =
 b

a
f (x) dx.

a b
x

f(x)

Figure 3.5: P(a < X < b ).

De“nition 3.6: The function f (x) is a probability density function (pdf) for the continuous
random variable X , de“ned over the set of real numbers, if

1. f (x) � 0, for all x 
 R.

2.
� �

Š� f (x) dx = 1.

3. P(a < X < b ) =
� b

a f (x) dx.

Example 3.11: Suppose that the error in the reaction temperature, in� C, for a controlled labora-
tory experiment is a continuous random variableX having the probability density
function

f (x) =

�
x 2

3 , Š1 < x < 2,
0, elsewhere.

.

(a) Verify that f (x) is a density function.

(b) Find P(0 < X � 1).

Solution : We use De“nition 3.6.

(a) Obviously, f (x) � 0. To verify condition 2 in De“nition 3.6, we have
 �

Š�
f (x) dx =

 2

Š 1

x2

3
dx =

x3

9
|2Š 1 =

8
9

+
1
9

= 1 .
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(b) Using formula 3 in De“nition 3.6, we obtain

P(0 < X � 1) =
 1

0

x2

3
dx =

x3

9

�
�
�
�

1

0
=

1
9

.

De“nition 3.7: The cumulative distribution function F (x) of a continuous random variable
X with density function f (x) is

F (x) = P(X � x) =
 x

Š�
f (t) dt, for Š 	 < x < 	 .

As an immediate consequence of De“nition 3.7, one can write the two results

P(a < X < b ) = F (b) Š F (a) and f (x) =
dF (x)

dx
,

if the derivative exists.

Example 3.12: For the density function of Example 3.11, “nd F (x), and use it to evaluate
P(0 < X � 1).

Solution : For Š1 < x < 2,

F (x) =
 x

Š�
f (t) dt =

 x

Š 1

t2

3
dt =

t3

9

�
�
�
�

x

Š 1
=

x3 + 1
9

.

Therefore,

F (x) =

	

�


�

0, x < Š1,
x 3 +1

9 , Š1 � x < 2,
1, x � 2.

The cumulative distribution function F (x) is expressed in Figure 3.6. Now

P(0 < X � 1) = F (1) Š F (0) =
2
9

Š
1
9

=
1
9

,

which agrees with the result obtained by using the density function in Example
3.11.

Example 3.13: The Department of Energy (DOE) puts projects out on bid and generally estimates
what a reasonable bid should be. Call the estimateb. The DOE has determined
that the density function of the winning (low) bid is

f (y) =

�
5
8b, 2

5 b � y � 2b,
0, elsewhere.

Find F (y) and use it to determine the probability that the winning bid is less than
the DOE•s preliminary estimate b.

Solution : For 2b/5 � y � 2b,

F (y) =
 y

2b/ 5

5
8b

dy =
5t
8b

�
�
�
�

y

2b/ 5
=

5y
8b

Š
1
4

.
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f (x)

x
0 2� 1 1

0.5

1.0

Figure 3.6: Continuous cumulative distribution function.

Thus,

F (y) =

	

�


�

0, y < 2
5 b,

5y
8b Š 1

4 , 2
5 b � y < 2b,

1, y � 2b.

To determine the probability that the winning bid is less than the preliminary bid
estimate b, we have

P(Y � b) = F (b) =
5
8

Š
1
4

=
3
8

.

Exercises

3.1 Classify the following random variables as dis-
crete or continuous:

X : the number of automobile accidents per year
in Virginia.

Y : the length of time to play 18 holes of golf.

M : the amount of milk produced yearly by a par-
ticular cow.

N : the number of eggs laid each month by a hen.

P : the number of building permits issued each
month in a certain city.

Q: the weight of grain produced per acre.

3.2 An overseas shipment of 5 foreign automobiles
contains 2 that have slight paint blemishes. If an
agency receives 3 of these automobiles at random, list
the elements of the sample spaceS, using the letters B
and N for blemished and nonblemished, respectively;

then to each sample point assign a valuex of the ran-
dom variable X representing the number of automo-
biles with paint blemishes purchased by the agency.

3.3 Let W be a random variable giving the number
of heads minus the number of tails in three tosses of a
coin. List the elements of the sample spaceS for the
three tosses of the coin and to each sample point assign
a value w of W .

3.4 A coin is ”ipped until 3 heads in succession oc-
cur. List only those elements of the sample space that
require 6 or less tosses. Is this a discrete sample space?
Explain.

3.5 Determine the value c so that each of the follow-
ing functions can serve as a probability distribution of
the discrete random variable X :
(a) f (x) = c(x2 + 4), for x = 0 , 1, 2, 3;

(b) f (x) = c
� 2

x

�� 3
3Š x

�
, for x = 0 , 1, 2.
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3.6 The shelf life, in days, for bottles of a certain
prescribed medicine is a random variable having the
density function

f (x) =

�
20,000

( x +100) 3 , x > 0,

0, elsewhere.

Find the probability that a bottle of this medicine will
have a shell life of
(a) at least 200 days;
(b) anywhere from 80 to 120 days.

3.7 The total number of hours, measured in units of
100 hours, that a family runs a vacuum cleaner over a
period of one year is a continuous random variable X
that has the density function

f (x) =

�
�

	

x, 0 < x < 1,
2 Š x, 1 � x < 2,
0, elsewhere.

Find the probability that over a period of one year, a
family runs their vacuum cleaner
(a) less than 120 hours;
(b) between 50 and 100 hours.

3.8 Find the probability distribution of the random
variable W in Exercise 3.3, assuming that the coin is
biased so that a head is twice as likely to occur as a
tail.

3.9 The proportion of people who respond to a certain
mail-order solicitation is a continuous random variable
X that has the density function

f (x) =

�
2( x +2)

5 , 0 < x < 1,
0, elsewhere.

(a) Show that P (0 < X < 1) = 1 .
(b) Find the probability that more than 1/4 but fewer

than 1/2 of the people contacted will respond to
this type of solicitation.

3.10 Find a formula for the probability distribution of
the random variable X representing the outcome when
a single die is rolled once.

3.11 A shipment of 7 television sets contains 2 de-
fective sets. A hotel makes a random purchase of 3
of the sets. If x is the number of defective sets pur-
chased by the hotel, “nd the probability distribution
of X . Express the results graphically as a probability
histogram.

3.12 An investment “rm o�ers its customers munici-
pal bonds that mature after varying numbers of years.
Given that the cumulative distribution function of T ,
the number of years to maturity for a randomly se-
lected bond, is

F (t) =

�





�






	

0, t < 1,
1
4 , 1 � t < 3,
1
2 , 3 � t < 5,
3
4 , 5 � t < 7,
1, t � 7,

“nd
(a) P (T = 5);
(b) P (T > 3);
(c) P (1.4 < T < 6);
(d) P (T � 5 | T � 2).

3.13 The probability distribution of X , the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given by

x 0 1 2 3 4
f (x) 0.41 0.37 0.16 0.05 0.01

Construct the cumulative distribution function of X .

3.14 The waiting time, in hours, between successive
speeders spotted by a radar unit is a continuous ran-
dom variable with cumulative distribution function

F (x) =
�

0, x < 0,
1 Š eŠ 8x , x � 0.

Find the probability of waiting less than 12 minutes
between successive speeders
(a) using the cumulative distribution function of X ;
(b) using the probability density function of X .

3.15 Find the cumulative distribution function of the
random variable X representing the number of defec-
tives in Exercise 3.11. Then using F (x), “nd
(a) P (X = 1);
(b) P (0 < X � 2).

3.16 Construct a graph of the cumulative distribution
function of Exercise 3.15.

3.17 A continuous random variable X that can as-
sume values betweenx = 1 and x = 3 has a density
function given by f (x) = 1 / 2.
(a) Show that the area under the curve is equal to 1.
(b) Find P(2 < X < 2.5).
(c) Find P(X � 1.6).
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3.18 A continuous random variable X that can as-
sume values betweenx = 2 and x = 5 has a density
function given by f (x) = 2(1 + x)/ 27. Find
(a) P (X < 4);
(b) P (3 � X < 4).

3.19 For the density function of Exercise 3.17, “nd
F (x). Use it to evaluate P(2 < X < 2.5).

3.20 For the density function of Exercise 3.18, “nd
F (x), and use it to evaluate P(3 � X < 4).

3.21 Consider the density function

f (x) =
�

k
�

x, 0 < x < 1,
0, elsewhere.

(a) Evaluate k.
(b) Find F (x) and use it to evaluate

P(0.3 < X < 0.6).

3.22 Three cards are drawn in succession from a deck
without replacement. Find the probability distribution
for the number of spades.

3.23 Find the cumulative distribution function of the
random variable W in Exercise 3.8. Using F (w), “nd
(a) P (W > 0);
(b) P (Š1 � W < 3).

3.24 Find the probability distribution for the number
of jazz CDs when 4 CDs are selected at random from
a collection consisting of 5 jazz CDs, 2 classical CDs,
and 3 rock CDs. Express your results by means of a
formula.

3.25 From a box containing 4 dimes and 2 nickels,
3 coins are selected at random without replacement.
Find the probability distribution for the total T of the
3 coins. Express the probability distribution graphi-
cally as a probability histogram.

3.26 From a box containing 4 black balls and 2 green
balls, 3 balls are drawn in succession, each ball being
replaced in the box before the next draw is made. Find
the probability distribution for the number of green
balls.

3.27 The time to failure in hours of an important
piece of electronic equipment used in a manufactured
DVD player has the density function

f (x) =
� 1

2000 exp(Šx/ 2000), x � 0,
0, x < 0.

(a) Find F (x).
(b) Determine the probability that the component (and

thus the DVD player) lasts more than 1000 hours
before the component needs to be replaced.

(c) Determine the probability that the component fails
before 2000 hours.

3.28 A cereal manufacturer is aware that the weight
of the product in the box varies slightly from box
to box. In fact, considerable historical data have al-
lowed the determination of the density function that
describes the probability structure for the weight (in
ounces). Letting X be the random variable weight, in
ounces, the density function can be described as

f (x) =
� 2

5 , 23.75 � x � 26.25,
0, elsewhere.

(a) Verify that this is a valid density function.
(b) Determine the probability that the weight is

smaller than 24 ounces.
(c) The company desires that the weight exceeding 26

ounces be an extremely rare occurrence. What is
the probability that this rare occurrence does ac-
tually occur?

3.29 An important factor in solid missile fuel is the
particle size distribution. Signi“cant problems occur if
the particle sizes are too large. From production data
in the past, it has been determined that the particle
size (in micrometers) distribution is characterized by

f (x) =
�

3xŠ 4, x > 1,
0, elsewhere.

(a) Verify that this is a valid density function.
(b) Evaluate F (x).
(c) What is the probability that a random particle

from the manufactured fuel exceeds 4 micrometers?

3.30 Measurements of scienti“c systems are always
subject to variation, some more than others. There
are many structures for measurement error, and statis-
ticians spend a great deal of time modeling these errors.
Suppose the measurement errorX of a certain physical
quantity is decided by the density function

f (x) =
�

k(3 Š x2), Š1 � x � 1,
0, elsewhere.

(a) Determine k that renders f (x) a valid density func-
tion.

(b) Find the probability that a random error in mea-
surement is less than 1/2.

(c) For this particular measurement, it is undesirable
if the magnitude of the error (i.e., |x|) exceeds 0.8.
What is the probability that this occurs?
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3.31 Based on extensive testing, it is determined by
the manufacturer of a washing machine that the time
Y (in years) before a major repair is required is char-
acterized by the probability density function

f (y) =
� 1

4 eŠ y/ 4 , y � 0,
0, elsewhere.

(a) Critics would certainly consider the product a bar-
gain if it is unlikely to require a major repair before
the sixth year. Comment on this by determining
P(Y > 6).

(b) What is the probability that a major repair occurs
in the “rst year?

3.32 The proportion of the budget for a certain type
of industrial company that is allotted to environmental
and pollution control is coming under scrutiny. A data
collection project determines that the distribution of
these proportions is given by

f (y) =
�

5(1 Š y)4, 0 � y � 1,
0, elsewhere.

(a) Verify that the above is a valid density function.
(b) What is the probability that a company chosen at

random expends less than 10% of its budget on en-
vironmental and pollution controls?

(c) What is the probability that a company selected
at random spends more than 50% of its budget on
environmental and pollution controls?

3.33 Suppose a certain type of small data processing
“rm is so specialized that some have di�culty making
a pro“t in their “rst year of operation. The probabil-
ity density function that characterizes the proportion
Y that make a pro“t is given by

f (y) =
�

ky4(1 Š y)3, 0 � y � 1,
0, elsewhere.

(a) What is the value of k that renders the above a
valid density function?

(b) Find the probability that at most 50% of the “rms
make a pro“t in the “rst year.

(c) Find the probability that at least 80% of the “rms
make a pro“t in the “rst year.

3.34 Magnetron tubes are produced on an automated
assembly line. A sampling plan is used periodically to
assess quality of the lengths of the tubes. This mea-
surement is subject to uncertainty. It is thought that
the probability that a random tube meets length spec-
i“cation is 0.99. A sampling plan is used in which the
lengths of 5 random tubes are measured.
(a) Show that the probability function of Y , the num-

ber out of 5 that meet length speci“cation, is given
by the following discrete probability function:

f (y) =
5!

y!(5 Š y)!
(0.99)y (0.01)5Š y ,

for y = 0 , 1, 2, 3, 4, 5.
(b) Suppose random selections are made o� the line

and 3 are outside speci“cations. Usef (y) above ei-
ther to support or to refute the conjecture that the
probability is 0.99 that a single tube meets speci“-
cations.

3.35 Suppose it is known from large amounts of his-
torical data that X , the number of cars that arrive at
a speci“c intersection during a 20-second time period,
is characterized by the following discrete probability
function:

f (x) = eŠ 6 6x

x!
, for x = 0 , 1, 2, . . . .

(a) Find the probability that in a speci“c 20-second
time period, more than 8 cars arrive at the
intersection.

(b) Find the probability that only 2 cars arrive.

3.36 On a laboratory assignment, if the equipment is
working, the density function of the observed outcome,
X , is

f (x) =
�

2(1 Š x), 0 < x < 1,
0, otherwise.

(a) Calculate P(X � 1/ 3).
(b) What is the probability that X will exceed 0.5?
(c) Given that X � 0.5, what is the probability that

X will be less than 0.75?

3.4 Joint Probability Distributions

Our study of random variables and their probability distributions in the preced-
ing sections is restricted to one-dimensional sample spaces, in that we recorded
outcomes of an experiment as values assumed by a single random variable. There
will be situations, however, where we may “nd it desirable to record the simulta-
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neous outcomes of several random variables. For example, we might measure the
amount of precipitate P and volume V of gas released from a controlled chemical
experiment, giving rise to a two-dimensional sample space consisting of the out-
comes (p, v), or we might be interested in the hardnessH and tensile strength T
of cold-drawn copper, resulting in the outcomes (h, t ). In a study to determine the
likelihood of success in college based on high school data, we might use a three-
dimensional sample space and record for each individual his or her aptitude test
score, high school class rank, and grade-point average at the end of freshman year
in college.

If X and Y are two discrete random variables, the probability distribution for
their simultaneous occurrence can be represented by a function with valuesf (x, y)
for any pair of values (x, y) within the range of the random variables X and Y . It
is customary to refer to this function as the joint probability distribution of
X and Y .

Hence, in the discrete case,

f (x, y) = P(X = x, Y = y);

that is, the values f (x, y) give the probability that outcomes x and y occur at
the same time. For example, if an 18-wheeler is to have its tires serviced andX
represents the number of miles these tires have been driven andY represents the
number of tires that need to be replaced, thenf (30000, 5) is the probability that
the tires are used over 30,000 miles and the truck needs 5 new tires.

De“nition 3.8: The function f (x, y) is a joint probability distribution or probability mass
function of the discrete random variablesX and Y if

1. f (x, y) � 0 for all (x, y),

2.
�

x

�

y
f (x, y) = 1,

3. P(X = x, Y = y) = f (x, y).

For any region A in the xy plane, P[(X, Y ) 
 A] =
� �

A
f (x, y).

Example 3.14: Two ballpoint pens are selected at random from a box that contains 3 blue pens,
2 red pens, and 3 green pens. IfX is the number of blue pens selected andY is
the number of red pens selected, “nd

(a) the joint probability function f (x, y),

(b) P[(X, Y ) 
 A], where A is the region { (x, y)|x + y � 1} .

Solution : The possible pairs of values (x, y) are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0).

(a) Now, f (0, 1), for example, represents the probability that a red and a green
pens are selected. The total number of equally likely ways of selecting any 2
pens from the 8 is

� 8
2

�
= 28. The number of ways of selecting 1 red from 2

red pens and 1 green from 3 green pens is
� 2

1

�� 3
1

�
= 6. Hence, f (0, 1) = 6 / 28

= 3 / 14. Similar calculations yield the probabilities for the other cases, which
are presented in Table 3.1. Note that the probabilities sum to 1. In Chapter
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5, it will become clear that the joint probability distribution of Table 3.1 can
be represented by the formula

f (x, y) =

� 3
x

�� 2
y

�� 3
2Š x Š y

�

� 8
2

� ,

for x = 0, 1, 2; y = 0, 1, 2; and 0 � x + y � 2.

(b) The probability that ( X, Y ) fall in the region A is

P[(X, Y ) 
 A] = P(X + Y � 1) = f (0, 0) + f (0, 1) + f (1, 0)

=
3
28

+
3
14

+
9
28

=
9
14

.

Table 3.1: Joint Probability Distribution for Example 3.14

x Row
f (x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

When X and Y are continuous random variables, thejoint density function
f (x, y) is a surface lying above thexy plane, and P[(X, Y ) 
 A], where A is any
region in the xy plane, is equal to the volume of the right cylinder bounded by the
baseA and the surface.

De“nition 3.9: The function f (x, y) is a joint density function of the continuous random
variables X and Y if

1. f (x, y) � 0, for all (x, y),

2.
� �

Š�

� �
Š� f (x, y) dx dy = 1,

3. P[(X, Y ) 
 A] =
� �

A f (x, y) dx dy, for any region A in the xy plane.

Example 3.15: A privately owned business operates both a drive-in facility and a walk-in facility.
On a randomly selected day, letX and Y , respectively, be the proportions of the
time that the drive-in and the walk-in facilities are in use, and suppose that the
joint density function of these random variables is

f (x, y) =

�
2
5 (2x + 3y), 0 � x � 1, 0 � y � 1,
0, elsewhere.

(a) Verify condition 2 of De“nition 3.9.

(b) Find P[(X, Y ) 
 A], where A = { (x, y) | 0 < x < 1
2 , 1

4 < y < 1
2 } .
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Solution : (a) The integration of f (x, y) over the whole region is

 �

Š�

 �

Š�
f (x, y) dx dy =

 1

0

 1

0

2
5

(2x + 3y) dx dy

=
 1

0

�
2x2

5
+

6xy
5

� �
�
�
�

x =1

x =0
dy

=
 1

0

�
2
5

+
6y
5

�
dy =

�
2y
5

+
3y2

5

� �
�
�
�

1

0
=

2
5

+
3
5

= 1 .

(b) To calculate the probability, we use

P[(X, Y ) 
 A] = P
�

0 < X <
1
2

,
1
4

< Y <
1
2

�

=
 1/ 2

1/ 4

 1/ 2

0

2
5

(2x + 3y) dx dy

=
 1/ 2

1/ 4

�
2x2

5
+

6xy
5

� �
�
�
�

x =1 / 2

x =0
dy =

 1/ 2

1/ 4

�
1
10

+
3y
5

�
dy

=
�

y
10

+
3y2

10

� �
�
�
�

1/ 2

1/ 4

=
1
10

��
1
2

+
3
4

�
Š

�
1
4

+
3
16

��
=

13
160

.

Given the joint probability distribution f (x, y) of the discrete random variables
X and Y , the probability distribution g(x) of X alone is obtained by summing
f (x, y) over the values ofY . Similarly, the probability distribution h(y) of Y alone
is obtained by summing f (x, y) over the values ofX . We de“ne g(x) and h(y) to
be the marginal distributions of X and Y , respectively. When X and Y are
continuous random variables, summations are replaced by integrals. We can now
make the following general de“nition.

De“nition 3.10: The marginal distributions of X alone and ofY alone are

g(x) =
�

y

f (x, y) and h(y) =
�

x

f (x, y)

for the discrete case, and

g(x) =
 �

Š�
f (x, y) dy and h(y) =

 �

Š�
f (x, y) dx

for the continuous case.

The term marginal is used here because, in the discrete case, the values ofg(x)
and h(y) are just the marginal totals of the respective columns and rows when the
values of f (x, y) are displayed in a rectangular table.
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Example 3.16: Show that the column and row totals of Table 3.1 give the marginal distribution
of X alone and ofY alone.

Solution : For the random variable X , we see that

g(0) = f (0, 0) + f (0, 1) + f (0, 2) =
3
28

+
3
14

+
1
28

=
5
14

,

g(1) = f (1, 0) + f (1, 1) + f (1, 2) =
9
28

+
3
14

+ 0 =
15
28

,

and

g(2) = f (2, 0) + f (2, 1) + f (2, 2) =
3
28

+ 0 + 0 =
3
28

,

which are just the column totals of Table 3.1. In a similar manner we could show
that the values of h(y) are given by the row totals. In tabular form, these marginal
distributions may be written as follows:

x 0 1 2

g(x) 5
14

15
28

3
28

y 0 1 2

h(y) 15
28

3
7

1
28

Example 3.17: Find g(x) and h(y) for the joint density function of Example 3.15.
Solution : By de“nition,

g(x) =
 �

Š�
f (x, y) dy =

 1

0

2
5

(2x + 3y) dy =
�

4xy
5

+
6y2

10

� �
�
�
�

y=1

y=0
=

4x + 3
5

,

for 0 � x � 1, and g(x) = 0 elsewhere. Similarly,

h(y) =
 �

Š�
f (x, y) dx =

 1

0

2
5

(2x + 3y) dx =
2(1 + 3y)

5
,

for 0 � y � 1, and h(y) = 0 elsewhere.
The fact that the marginal distributions g(x) and h(y) are indeed the proba-

bility distributions of the individual variables X and Y alone can be veri“ed by
showing that the conditions of De“nition 3.4 or De“nition 3.6 are satis“ed. For
example, in the continuous case

 �

Š�
g(x) dx =

 �

Š�

 �

Š�
f (x, y) dy dx = 1 ,

and

P(a < X < b ) = P(a < X < b, Š	 < Y < 	 )

=
 b

a

 �

Š�
f (x, y) dy dx =

 b

a
g(x) dx.

In Section 3.1, we stated that the valuex of the random variable X represents
an event that is a subset of the sample space. If we use the de“nition of conditional
probability as stated in Chapter 2,

P(B |A) =
P(A � B )

P(A)
, provided P(A) > 0,
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whereA and B are now the events de“ned byX = x and Y = y, respectively, then

P(Y = y | X = x) =
P(X = x, Y = y)

P(X = x)
=

f (x, y)
g(x)

, provided g(x) > 0,

where X and Y are discrete random variables.
It is not di�cult to show that the function f (x, y)/g (x), which is strictly a func-

tion of y with x “xed, satis“es all the conditions of a probability distribution. This
is also true whenf (x, y) and g(x) are the joint density and marginal distribution,
respectively, of continuous random variables. As a result, it is extremely important
that we make use of the special type of distribution of the formf (x, y)/g (x) in
order to be able to e�ectively compute conditional probabilities. This type of dis-
tribution is called a conditional probability distribution ; the formal de“nition
follows.

De“nition 3.11: Let X and Y be two random variables, discrete or continuous. Theconditional
distribution of the random variable Y given that X = x is

f (y|x) =
f (x, y)
g(x)

, provided g(x) > 0.

Similarly, the conditional distribution of X given that Y = y is

f (x|y) =
f (x, y)
h(y)

, provided h(y) > 0.

If we wish to “nd the probability that the discrete random variable X falls between
a and b when it is known that the discrete variable Y = y, we evaluate

P(a < X < b | Y = y) =
�

a<x<b

f (x|y),

where the summation extends over all values ofX betweena and b. When X and
Y are continuous, we evaluate

P(a < X < b | Y = y) =
 b

a
f (x|y) dx.

Example 3.18: Referring to Example 3.14, “nd the conditional distribution of X , given that Y = 1,
and use it to determine P(X = 0 | Y = 1).

Solution : We need to “nd f (x|y), where y = 1. First, we “nd that

h(1) =
2�

x =0

f (x, 1) =
3
14

+
3
14

+ 0 =
3
7

.

Now

f (x|1) =
f (x, 1)
h(1)

=
�

7
3

�
f (x, 1), x = 0 , 1, 2.
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Therefore,

f (0|1) =
�

7
3

�
f (0, 1) =

�
7
3

� �
3
14

�
=

1
2

, f (1|1) =
�

7
3

�
f (1, 1) =

�
7
3

� �
3
14

�
=

1
2

,

f (2|1) =
�

7
3

�
f (2, 1) =

�
7
3

�
(0) = 0 ,

and the conditional distribution of X , given that Y = 1, is
x 0 1 2

f (x|1) 1
2

1
2 0

Finally,

P(X = 0 | Y = 1) = f (0|1) =
1
2

.

Therefore, if it is known that 1 of the 2 pen re“lls selected is red, we have a
probability equal to 1/2 that the other re“ll is not blue.

Example 3.19: The joint density for the random variables (X, Y ), where X is the unit temperature
change andY is the proportion of spectrum shift that a certain atomic particle
produces, is

f (x, y) =

�
10xy2, 0 < x < y < 1,
0, elsewhere.

(a) Find the marginal densities g(x), h(y), and the conditional density f (y|x).

(b) Find the probability that the spectrum shifts more than half of the total
observations, given that the temperature is increased by 0.25 unit.

Solution : (a) By de“nition,

g(x) =
 �

Š�
f (x, y) dy =

 1

x
10xy2 dy

=
10
3

xy3

�
�
�
�

y=1

y= x
=

10
3

x(1 Š x3), 0 < x < 1,

h(y) =
 �

Š�
f (x, y) dx =

 y

0
10xy2 dx = 5x2y2

�
�x = y

x =0 = 5y4, 0 < y < 1.

Now

f (y|x) =
f (x, y)
g(x)

=
10xy2

10
3 x(1 Š x3)

=
3y2

1 Š x3 , 0 < x < y < 1.

(b) Therefore,

P
�

Y >
1
2

�
�
�
� X = 0 .25

�
=

 1

1/ 2
f (y | x = 0 .25) dy =

 1

1/ 2

3y2

1 Š 0.253 dy =
8
9

.

Example 3.20: Given the joint density function

f (x, y) =

�
x (1+3 y2 )

4 , 0 < x < 2, 0 < y < 1,
0, elsewhere,



3.4 Joint Probability Distributions 101

“nd g(x), h(y), f (x|y), and evaluate P( 1
4 < X < 1

2 | Y = 1
3 ).

Solution : By de“nition of the marginal density. for 0 < x < 2,

g(x) =
 �

Š�
f (x, y) dy =

 1

0

x(1 + 3y2)
4

dy

=
�

xy
4

+
xy3

4

� �
�
�
�

y=1

y=0
=

x
2

,

and for 0 < y < 1,

h(y) =
 �

Š�
f (x, y) dx =

 2

0

x(1 + 3y2)
4

dx

=
�

x2

8
+

3x2y2

8

� �
�
�
�

x =2

x =0
=

1 + 3y2

2
.

Therefore, using the conditional density de“nition, for 0 < x < 2,

f (x|y) =
f (x, y)
h(y)

=
x(1 + 3y2)/ 4
(1 + 3y2)/ 2

=
x
2

,

and

P
�

1
4

< X <
1
2

�
�
�
� Y =

1
3

�
=

 1/ 2

1/ 4

x
2

dx =
3
64

.

Statistical Independence

If f (x|y) does not depend ony, as is the case for Example 3.20, thenf (x|y) = g(x)
and f (x, y) = g(x)h(y). The proof follows by substituting

f (x, y) = f (x|y)h(y)

into the marginal distribution of X . That is,

g(x) =
 �

Š�
f (x, y) dy =

 �

Š�
f (x|y)h(y) dy.

If f (x|y) does not depend ony, we may write

g(x) = f (x|y)
 �

Š�
h(y) dy.

Now
 �

Š�
h(y) dy = 1 ,

sinceh(y) is the probability density function of Y . Therefore,

g(x) = f (x|y) and then f (x, y) = g(x)h(y).
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It should make sense to the reader that iff (x|y) does not depend ony, then of
course the outcome of the random variableY has no impact on the outcome of the
random variable X . In other words, we say that X and Y are independent random
variables. We now o�er the following formal de“nition of statistical independence.

De“nition 3.12: Let X and Y be two random variables, discrete or continuous, with joint proba-
bility distribution f (x, y) and marginal distributions g(x) and h(y), respectively.
The random variablesX and Y are said to bestatistically independent if and
only if

f (x, y) = g(x)h(y)

for all ( x, y) within their range.

The continuous random variables of Example 3.20 are statistically indepen-
dent, since the product of the two marginal distributions gives the joint density
function. This is obviously not the case, however, for the continuous variables of
Example 3.19. Checking for statistical independence of discrete random variables
requires a more thorough investigation, since it is possible to have the product of
the marginal distributions equal to the joint probability distribution for some but
not all combinations of (x, y). If you can “nd any point ( x, y) for which f (x, y)
is de“ned such that f (x, y) �= g(x)h(y), the discrete variables X and Y are not
statistically independent.

Example 3.21: Show that the random variables of Example 3.14 are not statistically independent.
Proof : Let us consider the point (0, 1). From Table 3.1 we “nd the three probabilities

f (0, 1), g(0), and h(1) to be

f (0, 1) =
3
14

,

g(0) =
2�

y=0

f (0, y) =
3
28

+
3
14

+
1
28

=
5
14

,

h(1) =
2�

x =0

f (x, 1) =
3
14

+
3
14

+ 0 =
3
7

.

Clearly,

f (0, 1) �= g(0)h(1),

and thereforeX and Y are not statistically independent.
All the preceding de“nitions concerning two random variables can be general-

ized to the case ofn random variables. Let f (x1, x2, . . . , xn ) be the joint probability
function of the random variablesX 1, X 2, . . . , X n . The marginal distribution of X 1,
for example, is

g(x1) =
�

x 2

· · ·
�

x n

f (x1, x2, . . . , xn )
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for the discrete case, and

g(x1) =
 �

Š�
· · ·

 �

Š�
f (x1, x2, . . . , xn ) dx2 dx3 · · · dxn

for the continuous case. We can now obtainjoint marginal distributions such
as g(x1, x2), where

g(x1, x2) =

	
�

�

�

x 3

· · ·
�

x n

f (x1, x2, . . . , xn ) (discrete case),
� �

Š� · · ·
� �

Š� f (x1, x2, . . . , xn ) dx3 dx4 · · · dxn (continuous case).

We could consider numerous conditional distributions. For example, thejoint con-
ditional distribution of X 1, X 2, and X 3, given that X 4 = x4, X 5 = x5, . . . , X n =
xn , is written

f (x1, x2, x3 | x4, x5, . . . , xn ) =
f (x1, x2, . . . , xn )
g(x4, x5, . . . , xn )

,

where g(x4, x5, . . . , xn ) is the joint marginal distribution of the random variables
X 4, X 5, . . . , X n .

A generalization of De“nition 3.12 leads to the following de“nition for the mu-
tual statistical independence of the variablesX 1, X 2, . . . , X n .

De“nition 3.13: Let X 1, X 2, . . . , X n be n random variables, discrete or continuous, with
joint probability distribution f (x1, x2, . . . , xn ) and marginal distribution
f 1(x1), f 2(x2), . . . , f n (xn ), respectively. The random variablesX 1, X 2, . . . , X n are
said to be mutually statistically independent if and only if

f (x1, x2, . . . , xn ) = f 1(x1)f 2(x2) · · · f n (xn )

for all ( x1, x2, . . . , xn ) within their range.

Example 3.22: Suppose that the shelf life, in years, of a certain perishable food product packaged
in cardboard containers is a random variable whose probability density function is
given by

f (x) =

�
eŠ x , x > 0,
0, elsewhere.

Let X 1, X 2, and X 3 represent the shelf lives for three of these containers selected
independently and “nd P(X 1 < 2, 1 < X 2 < 3, X 3 > 2).

Solution : Since the containers were selected independently, we can assume that the random
variablesX 1, X 2, and X 3 are statistically independent, having the joint probability
density

f (x1, x2, x3) = f (x1)f (x2)f (x3) = eŠ x 1 eŠ x 2 eŠ x 3 = eŠ x 1 Š x 2 Š x 3 ,

for x1 > 0, x2 > 0, x3 > 0, and f (x1, x2, x3) = 0 elsewhere. Hence

P(X 1 < 2, 1 < X 2 < 3, X 3 > 2) =
 �

2

 3

1

 2

0
eŠ x 1 Š x 2 Š x 3 dx1 dx2 dx3

= (1 Š eŠ 2)(eŠ 1 Š eŠ 3)eŠ 2 = 0 .0372.
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What Are Important Characteristics of Probability Distributions
and Where Do They Come From?

This is an important point in the text to provide the reader with a transition into
the next three chapters. We have given illustrations in both examples and exercises
of practical scienti“c and engineering situations in which probability distributions
and their properties are used to solve important problems. These probability dis-
tributions, either discrete or continuous, were introduced through phrases like •it
is known thatŽ or •suppose thatŽ or even in some cases •historical evidence sug-
gests that.Ž These are situations in which the nature of the distribution and even
a good estimate of the probability structure can be determined through historical
data, data from long-term studies, or even large amounts of planned data. The
reader should remember the discussion of the use of histograms in Chapter 1 and
from that recall how frequency distributions are estimated from the histograms.
However, not all probability functions and probability density functions are derived
from large amounts of historical data. There are a substantial number of situa-
tions in which the nature of the scienti“c scenario suggests a distribution type.
Indeed, many of these are re”ected in exercises in both Chapter 2 and this chap-
ter. When independent repeated observations are binary in nature (e.g., defective
or not, survive or not, allergic or not) with value 0 or 1, the distribution covering
this situation is called the binomial distribution and the probability function
is known and will be demonstrated in its generality in Chapter 5. Exercise 3.34
in Section 3.3 and Review Exercise 3.80 are examples, and there are others that
the reader should recognize. The scenario of a continuous distribution in time to
failure, as in Review Exercise 3.69 or Exercise 3.27 on page 93, often suggests a dis-
tribution type called the exponential distribution . These types of illustrations
are merely two of many so-called standard distributions that are used extensively
in real-world problems because the scienti“c scenario that gives rise to each of them
is recognizable and occurs often in practice. Chapters 5 and 6 cover many of these
types along with some underlying theory concerning their use.

A second part of this transition to material in future chapters deals with the
notion of population parameters or distributional parameters . Recall in
Chapter 1 we discussed the need to use data to provide information about these
parameters. We went to some length in discussing the notions of amean and
variance and provided a vision for the concepts in the context of a population.
Indeed, the population mean and variance are easily found from the probability
function for the discrete case or probability density function for the continuous
case. These parameters and their importance in the solution of many types of
real-world problems will provide much of the material in Chapters 8 through 17.

Exercises

3.37 Determine the values of c so that the follow-
ing functions represent joint probability distributions
of the random variables X and Y :
(a) f (x, y ) = cxy, for x = 1 , 2, 3; y = 1 , 2, 3;
(b) f (x, y ) = c|x Š y|, for x = Š2, 0, 2; y = Š2, 3.

3.38 If the joint probability distribution of X and Y
is given by

f (x, y ) =
x + y

30
, for x = 0 , 1, 2, 3; y = 0 , 1, 2,

“nd
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(a) P (X � 2, Y = 1);
(b) P (X > 2, Y � 1);
(c) P (X > Y );
(d) P (X + Y = 4).

3.39 From a sack of fruit containing 3 oranges, 2 ap-
ples, and 3 bananas, a random sample of 4 pieces of
fruit is selected. If X is the number of oranges andY
is the number of apples in the sample, “nd
(a) the joint probability distribution of X and Y ;
(b) P [(X, Y ) � A], where A is the region that is given

by { (x, y ) | x + y � 2} .

3.40 A fast-food restaurant operates both a drive-
through facility and a walk-in facility. On a randomly
selected day, let X and Y , respectively, be the propor-
tions of the time that the drive-through and walk-in
facilities are in use, and suppose that the joint density
function of these random variables is

f (x, y ) =
� 2

3 (x + 2 y), 0 � x � 1, 0 � y � 1,
0, elsewhere.

(a) Find the marginal density of X .
(b) Find the marginal density of Y .
(c) Find the probability that the drive-through facility

is busy less than one-half of the time.

3.41 A candy company distributes boxes of choco-
lates with a mixture of creams, to�ees, and cordials.
Suppose that the weight of each box is 1 kilogram, but
the individual weights of the creams, to�ees, and cor-
dials vary from box to box. For a randomly selected
box, let X and Y represent the weights of the creams
and the to�ees, respectively, and suppose that the joint
density function of these variables is

f (x, y ) =
�

24xy, 0 � x � 1, 0 � y � 1, x + y � 1,
0, elsewhere.

(a) Find the probability that in a given box the cordials
account for more than 1/2 of the weight.

(b) Find the marginal density for the weight of the
creams.

(c) Find the probability that the weight of the to�ees
in a box is less than 1/8 of a kilogram if it is known
that creams constitute 3/4 of the weight.

3.42 Let X and Y denote the lengths of life, in years,
of two components in an electronic system. If the joint
density function of these variables is

f (x, y ) =
�

eŠ ( x + y ) , x > 0, y > 0,
0, elsewhere,

“nd P(0 < X < 1 | Y = 2).

3.43 Let X denote the reaction time, in seconds, to
a certain stimulus and Y denote the temperature ( � F)
at which a certain reaction starts to take place. Sup-
pose that two random variables X and Y have the joint
density

f (x, y ) =
�

4xy, 0 < x < 1, 0 < y < 1,
0, elsewhere.

Find
(a) P (0 � X � 1

2 and 1
4 � Y � 1

2 );
(b) P (X < Y ).

3.44 Each rear tire on an experimental airplane is
supposed to be “lled to a pressure of 40 pounds per
square inch (psi). Let X denote the actual air pressure
for the right tire and Y denote the actual air pressure
for the left tire. Suppose that X and Y are random
variables with the joint density function

f (x, y ) =
�

k(x2 + y2), 30 � x < 50, 30 � y < 50,
0, elsewhere.

(a) Find k.
(b) Find P(30 � X � 40 and 40� Y < 50).
(c) Find the probability that both tires are under“lled.

3.45 Let X denote the diameter of an armored elec-
tric cable and Y denote the diameter of the ceramic
mold that makes the cable. Both X and Y are scaled
so that they range between 0 and 1. Suppose thatX
and Y have the joint density

f (x, y ) =

�
1
y , 0 < x < y < 1,
0, elsewhere.

Find P(X + Y > 1/ 2).

3.46 Referring to Exercise 3.38, “nd
(a) the marginal distribution of X ;
(b) the marginal distribution of Y .

3.47 The amount of kerosene, in thousands of liters,
in a tank at the beginning of any day is a random
amount Y from which a random amount X is sold dur-
ing that day. Suppose that the tank is not resupplied
during the day so that x � y, and assume that the
joint density function of these variables is

f (x, y ) =
�

2, 0 < x � y < 1,
0, elsewhere.

(a) Determine if X and Y are independent.
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(b) Find P(1/ 4 < X < 1/ 2 | Y = 3 / 4).

3.48 Referring to Exercise 3.39, “nd
(a) f (y|2) for all values of y;
(b) P (Y = 0 | X = 2).

3.49 Let X denote the number of times a certain nu-
merical control machine will malfunction: 1, 2, or 3
times on any given day. Let Y denote the number of
times a technician is called on an emergency call. Their
joint probability distribution is given as

x
f (x, y ) 1 2 3

y

1
3
5

0.05
0.05
0.00

0.05
0.10
0.20

0.10
0.35
0.10

(a) Evaluate the marginal distribution of X .
(b) Evaluate the marginal distribution of Y .
(c) Find P(Y = 3 | X = 2).

3.50 Suppose that X and Y have the following joint
probability distribution:

x
f (x, y ) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the marginal distribution of X .
(b) Find the marginal distribution of Y .

3.51 Three cards are drawn without replacement
from the 12 face cards (jacks, queens, and kings) of
an ordinary deck of 52 playing cards. Let X be the
number of kings selected and Y the number of jacks.
Find
(a) the joint probability distribution of X and Y ;
(b) P [(X, Y ) � A], where A is the region given by

{ (x, y ) | x + y � 2} .

3.52 A coin is tossed twice. Let Z denote the number
of heads on the “rst toss and W the total number of
heads on the 2 tosses. If the coin is unbalanced and a
head has a 40% chance of occurring, “nd
(a) the joint probability distribution of W and Z ;
(b) the marginal distribution of W ;
(c) the marginal distribution of Z ;
(d) the probability that at least 1 head occurs.

3.53 Given the joint density function

f (x, y ) =
� 6Š x Š y

8 , 0 < x < 2, 2 < y < 4,
0, elsewhere,

“nd P(1 < Y < 3 | X = 1).

3.54 Determine whether the two random variables of
Exercise 3.49 are dependent or independent.

3.55 Determine whether the two random variables of
Exercise 3.50 are dependent or independent.

3.56 The joint density function of the random vari-
ables X and Y is

f (x, y ) =
�

6x, 0 < x < 1, 0 < y < 1 Š x,
0, elsewhere.

(a) Show that X and Y are not independent.
(b) Find P(X > 0.3 | Y = 0 .5).

3.57 Let X , Y , and Z have the joint probability den-
sity function

f (x, y, z ) =
�

kxy 2z, 0 < x, y < 1, 0 < z < 2,
0, elsewhere.

(a) Find k.
(b) Find P(X < 1

4 , Y > 1
2 , 1 < Z < 2).

3.58 Determine whether the two random variables of
Exercise 3.43 are dependent or independent.

3.59 Determine whether the two random variables of
Exercise 3.44 are dependent or independent.

3.60 The joint probability density function of the ran-
dom variables X , Y , and Z is

f (x, y, z ) =

�
4xyz 2

9 , 0 < x, y < 1, 0 < z < 3,
0, elsewhere.

Find
(a) the joint marginal density function of Y and Z ;
(b) the marginal density of Y ;
(c) P ( 1

4 < X < 1
2 , Y > 1

3 , 1 < Z < 2);

(d) P (0 < X < 1
2 | Y = 1

4 , Z = 2).
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Review Exercises

3.61 A tobacco company produces blends of tobacco,
with each blend containing various proportions of
Turkish, domestic, and other tobaccos. The propor-
tions of Turkish and domestic in a blend are random
variables with joint density function ( X = Turkish and
Y = domestic)

f (x, y ) =
�

24xy, 0 � x, y � 1, x + y � 1,
0, elsewhere.

(a) Find the probability that in a given box the Turkish
tobacco accounts for over half the blend.

(b) Find the marginal density function for the propor-
tion of the domestic tobacco.

(c) Find the probability that the proportion of Turk-
ish tobacco is less than 1/8 if it is known that the
blend contains 3/4 domestic tobacco.

3.62 An insurance company o�ers its policyholders a
number of di�erent premium payment options. For a
randomly selected policyholder, let X be the number of
months between successive payments. The cumulative
distribution function of X is

F (x) =

�





�






	

0, if x < 1,
0.4, if 1 � x < 3,
0.6, if 3 � x < 5,
0.8, if 5 � x < 7,
1.0, if x � 7.

(a) What is the probability mass function of X ?
(b) Compute P(4 < X � 7).

3.63 Two electronic components of a missile system
work in harmony for the success of the total system.
Let X and Y denote the life in hours of the two com-
ponents. The joint density of X and Y is

f (x, y ) =
�

yeŠ y (1+ x ) , x, y � 0,
0, elsewhere.

(a) Give the marginal density functions for both ran-
dom variables.

(b) What is the probability that the lives of both com-
ponents will exceed 2 hours?

3.64 A service facility operates with two service lines.
On a randomly selected day, let X be the proportion of
time that the “rst line is in use whereas Y is the pro-
portion of time that the second line is in use. Suppose
that the joint probability density function for ( X, Y ) is

f (x, y ) =
� 3

2 (x2 + y2), 0 � x, y � 1,
0, elsewhere.

(a) Compute the probability that neither line is busy
more than half the time.

(b) Find the probability that the “rst line is busy more
than 75% of the time.

3.65 Let the number of phone calls received by a
switchboard during a 5-minute interval be a random
variable X with probability function

f (x) =
eŠ 22x

x!
, for x = 0 , 1, 2, . . . .

(a) Determine the probability that X equals 0, 1, 2, 3,
4, 5, and 6.

(b) Graph the probability mass function for these val-
ues of x.

(c) Determine the cumulative distribution function for
these values ofX .

3.66 Consider the random variables X and Y with
joint density function

f (x, y ) =
�

x + y, 0 � x, y � 1,
0, elsewhere.

(a) Find the marginal distributions of X and Y .
(b) Find P(X > 0.5, Y > 0.5).

3.67 An industrial process manufactures items that
can be classi“ed as either defective or not defective.
The probability that an item is defective is 0.1. An
experiment is conducted in which 5 items are drawn
randomly from the process. Let the random variable X
be the number of defectives in this sample of 5. What
is the probability mass function of X ?

3.68 Consider the following joint probability density
function of the random variables X and Y :

f (x, y ) =
� 3x Š y

9 , 1 < x < 3, 1 < y < 2,
0, elsewhere.

(a) Find the marginal density functions of X and Y .
(b) Are X and Y independent?
(c) Find P(X > 2).

3.69 The life span in hours of an electrical compo-
nent is a random variable with cumulative distribution
function

F (x) =
�

1 Š eŠ x
50 , x > 0,

0, eleswhere.
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(a) Determine its probability density function.
(b) Determine the probability that the life span of such

a component will exceed 70 hours.

3.70 Pairs of pants are being produced by a particu-
lar outlet facility. The pants are checked by a group of
10 workers. The workers inspect pairs of pants taken
randomly from the production line. Each inspector is
assigned a number from 1 through 10. A buyer selects
a pair of pants for purchase. Let the random variable
X be the inspector number.
(a) Give a reasonable probability mass function for X .
(b) Plot the cumulative distribution function for X .

3.71 The shelf life of a product is a random variable
that is related to consumer acceptance. It turns out
that the shelf life Y in days of a certain type of bakery
product has a density function

f (y) =
� 1

2 eŠ y/ 2 , 0 � y < 	 ,
0, elsewhere.

What fraction of the loaves of this product stocked to-
day would you expect to be sellable 3 days from now?

3.72 Passenger congestion is a service problem in air-
ports. Trains are installed within the airport to reduce
the congestion. With the use of the train, the time X in
minutes that it takes to travel from the main terminal
to a particular concourse has density function

f (x) =
� 1

10 , 0 � x � 10,
0, elsewhere.

(a) Show that the above is a valid probability density
function.

(b) Find the probability that the time it takes a pas-
senger to travel from the main terminal to the con-
course will not exceed 7 minutes.

3.73 Impurities in a batch of “nal product of a chem-
ical process often re”ect a serious problem. From con-
siderable plant data gathered, it is known that the pro-
portion Y of impurities in a batch has a density func-
tion given by

f (y) =
�

10(1 Š y)9, 0 � y � 1,
0, elsewhere.

(a) Verify that the above is a valid density function.
(b) A batch is considered not sellable and then not

acceptable if the percentage of impurities exceeds
60%. With the current quality of the process, what
is the percentage of batches that are not
acceptable?

3.74 The time Z in minutes between calls to an elec-
trical supply system has the probability density func-
tion

f (z) =
� 1

10 eŠ z/ 10 , 0 < z < 	 ,
0, elsewhere.

(a) What is the probability that there are no calls
within a 20-minute time interval?

(b) What is the probability that the “rst call comes
within 10 minutes of opening?

3.75 A chemical system that results from a chemical
reaction has two important components among others
in a blend. The joint distribution describing the pro-
portions X 1 and X 2 of these two components is given
by

f (x1, x2) =
�

2, 0 < x 1 < x 2 < 1,
0, elsewhere.

(a) Give the marginal distribution of X 1.
(b) Give the marginal distribution of X 2.
(c) What is the probability that component propor-

tions produce the results X 1 < 0.2 and X 2 > 0.5?
(d) Give the conditional distribution f X 1 |X 2 (x1|x2).

3.76 Consider the situation of Review Exercise 3.75.
But suppose the joint distribution of the two propor-
tions is given by

f (x1, x2) =
�

6x2, 0 < x 2 < x 1 < 1,
0, elsewhere.

(a) Give the marginal distribution f X 1 (x1) of the pro-
portion X 1 and verify that it is a valid density
function.

(b) What is the probability that proportion X 2 is less
than 0.5, given that X 1 is 0.7?

3.77 Consider the random variables X and Y that
represent the number of vehicles that arrive at two sep-
arate street corners during a certain 2-minute period.
These street corners are fairly close together so it is im-
portant that tra�c engineers deal with them jointly if
necessary. The joint distribution of X and Y is known
to be

f (x, y ) =
9
16

·
1

4( x + y )
,

for x = 0 , 1, 2, . . . and y = 0 , 1, 2, . . . .
(a) Are the two random variables X and Y indepen-

dent? Explain why or why not.
(b) What is the probability that during the time pe-

riod in question less than 4 vehicles arrive at the
two street corners?
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3.78 The behavior of series of components plays a
huge role in scienti“c and engineering reliability prob-
lems. The reliability of the entire system is certainly
no better than that of the weakest component in the
series. In a series system, the components operate in-
dependently of each other. In a particular system con-
taining three components, the probabilities of meeting
speci“cations for components 1, 2, and 3, respectively,
are 0.95, 0.99, and 0.92. What is the probability that
the entire system works?

3.79 Another type of system that is employed in en-
gineering work is a group of parallel components or a
parallel system. In this more conservative approach,
the probability that the system operates is larger than
the probability that any component operates. The sys-
tem fails only when all components fail. Consider a sit-
uation in which there are 4 independent components in
a parallel system with probability of operation given by

Component 1: 0.95; Component 2: 0.94;
Component 3: 0.90; Component 4: 0.97.

What is the probability that the system does not fail?

3.80 Consider a system of components in which there
are 5 independent components, each of which possesses
an operational probability of 0.92. The system does
have a redundancy built in such that it does not fail
if 3 out of the 5 components are operational. What is
the probability that the total system is operational?

3.81 Project : Take 5 class periods to observe the
shoe color of individuals in class. Assume the shoe
color categories are red, white, black, brown, and other.
Complete a frequency table for each color category.
(a) Estimate and interpret the meaning of the proba-

bility distribution.
(b) What is the estimated probability that in the next

class period a randomly selected student will be
wearing a red or a white pair of shoes?

3.5 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

In future chapters it will become apparent that probability distributions represent
the structure through which probabilities that are computed aid in the evalua-
tion and understanding of a process. For example, in Review Exercise 3.65, the
probability distribution that quanti“es the probability of a heavy load during cer-
tain time periods can be very useful in planning for any changes in the system.
Review Exercise 3.69 describes a scenario in which the life span of an electronic
component is studied. Knowledge of the probability structure for the component
will contribute signi“cantly to an understanding of the reliability of a large system
of which the component is a part. In addition, an understanding of the general
nature of probability distributions will enhance understanding of the concept of
a P-value , which was introduced brie”y in Chapter 1 and will play a major role
beginning in Chapter 10 and extending throughout the balance of the text.

Chapters 4, 5, and 6 depend heavily on the material in this chapter. In Chapter
4, we discuss the meaning of importantparameters in probability distributions.
These important parameters quantify notions of central tendency and variabil-
ity in a system. In fact, knowledge of these quantities themselves, quite apart
from the complete distribution, can provide insight into the nature of the system.
Chapters 5 and 6 will deal with engineering, biological, or general scienti“c scenar-
ios that identify special types of distributions. For example, the structure of the
probability function in Review Exercise 3.65 will easily be identi“ed under certain
assumptions discussed in Chapter 5. The same holds for the scenario of Review
Exercise 3.69. This is a special type oftime to failure problem for which the
probability density function will be discussed in Chapter 6.
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As far as potential hazards with the use of material in this chapter, the warning
to the reader is not to read more into the material than is evident. The general
nature of the probability distribution for a speci“c scienti“c phenomenon is not
obvious from what is learned in this chapter. The purpose of this chapter is for
readers to learn how to manipulate a probability distribution, not to learn how
to identify a speci“c type. Chapters 5 and 6 go a long way toward identi“cation
according to the general nature of the scienti“c system.



Chapter 4

Mathematical Expectation

4.1 Mean of a Random Variable

In Chapter 1, we discussed the sample mean, which is the arithmetic mean of the
data. Now consider the following. If two coins are tossed 16 times andX is the
number of heads that occur per toss, then the values ofX are 0, 1, and 2. Suppose
that the experiment yields no heads, one head, and two heads a total of 4, 7, and 5
times, respectively. The average number of heads per toss of the two coins is then

(0)(4) + (1)(7) + (2)(5)
16

= 1 .06.

This is an average value of the data and yet it is not a possible outcome of{ 0, 1, 2} .
Hence, an average is not necessarily a possible outcome for the experiment. For
instance, a salesman•s average monthly income is not likely to be equal to any of
his monthly paychecks.

Let us now restructure our computation for the average number of heads so as
to have the following equivalent form:

(0)
�

4
16

�
+ (1)

�
7
16

�
+ (2)

�
5
16

�
= 1 .06.

The numbers 4/16, 7/16, and 5/16 are the fractions of the total tosses resulting in 0,
1, and 2 heads, respectively. These fractions are also the relative frequencies for the
di�erent values of X in our experiment. In fact, then, we can calculate the mean,
or average, of a set of data by knowing the distinct values that occur and their
relative frequencies, without any knowledge of the total number of observations in
our set of data. Therefore, if 4/16, or 1/4, of the tosses result in no heads, 7/16 of
the tosses result in one head, and 5/16 of the tosses result in two heads, the mean
number of heads per toss would be 1.06 no matter whether the total number of
tosses were 16, 1000, or even 10,000.

This method of relative frequencies is used to calculate the average number of
heads per toss of two coins that we might expect in the long run. We shall refer
to this average value as themean of the random variable X or the mean of
the probability distribution of X and write it as µx or simply as µ when it is

111
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clear to which random variable we refer. It is also common among statisticians to
refer to this mean as the mathematical expectation, or the expected value of the
random variable X , and denote it asE(X ).

Assuming that 1 fair coin was tossed twice, we “nd that the sample space for
our experiment is

S = { HH, HT, TH, TT } .

Since the 4 sample points are all equally likely, it follows that

P(X = 0) = P(TT) =
1
4

, P(X = 1) = P(TH ) + P(HT ) =
1
2

,

and

P(X = 2) = P(HH ) =
1
4

,

where a typical element, sayTH , indicates that the “rst toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

µ = E(X ) = (0)
�

1
4

�
+ (1)

�
1
2

�
+ (2)

�
1
4

�
= 1 .

This result means that a person who tosses 2 coins over and over again will, on the
average, get 1 head per toss.

The method described above for calculating the expected number of heads
per toss of 2 coins suggests that the mean, or expected value, of any discrete
random variable may be obtained by multiplying each of the valuesx1, x2, . . . , xn

of the random variable X by its corresponding probability f (x1), f (x2), . . . , f (xn )
and summing the products. This is true, however, only if the random variable is
discrete. In the case of continuous random variables, the de“nition of an expected
value is essentially the same with summations replaced by integrations.

De“nition 4.1: Let X be a random variable with probability distribution f (x). The mean , or
expected value , of X is

µ = E(X ) =
�

x

xf (x)

if X is discrete, and

µ = E(X ) =
 �

Š�
xf (x) dx

if X is continuous.

The reader should note that the way to calculate the expected value, or mean,
shown here is di�erent from the way to calculate the sample mean described in
Chapter 1, where the sample mean is obtained by using data. In mathematical
expectation, the expected value is calculated by using the probability distribution.
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However, the mean is usually understood as a •centerŽ value of the underlying
distribution if we use the expected value, as in De“nition 4.1.

Example 4.1: A lot containing 7 components is sampled by a quality inspector; the lot contains
4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Solution : Let X represent the number of good components in the sample. The probability
distribution of X is

f (x) =

� 4
x

�� 3
3Š x

�

� 7
3

� , x = 0 , 1, 2, 3.

Simple calculations yield f (0) = 1 / 35, f (1) = 12 / 35, f (2) = 18 / 35, and f (3) =
4/ 35. Therefore,

µ = E(X ) = (0)
�

1
35

�
+ (1)

�
12
35

�
+ (2)

�
18
35

�
+ (3)

�
4
35

�
=

12
7

= 1 .7.

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components.

Example 4.2: A salesperson for a medical device company has two appointments on a given day.
At the “rst appointment, he believes that he has a 70% chance to make the deal,
from which he can earn $1000 commission if successful. On the other hand, he
thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.

Solution : First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

f ($0) = (1 Š 0.7)(1 Š 0.4) = 0 .18, f ($2500) = (0.7)(0.4) = 0 .28,

f ($1000) = (0.7)(1 Š 0.4) = 0 .42, and f ($1500) = (1 Š 0.7)(0.4) = 0 .12.

Therefore, the expected commission for the salesperson is

E(X ) = ($0)(0 .18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300.
Examples 4.1 and 4.2 are designed to allow the reader to gain some insight

into what we mean by the expected value of a random variable. In both cases the
random variables are discrete. We follow with an example involving a continuous
random variable, where an engineer is interested in themean life of a certain
type of electronic device. This is an illustration of a time to failure problem that
occurs often in practice. The expected value of the life of a device is an important
parameter for its evaluation.
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Example 4.3: Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

f (x) =

�
20,000

x 3 , x > 100,
0, elsewhere.

Find the expected life of this type of device.
Solution : Using De“nition 4.1, we have

µ = E(X ) =
 �

100
x

20, 000
x3 dx =

 �

100

20, 000
x2 dx = 200.

Therefore, we can expect this type of device to last,on average, 200 hours.
Now let us consider a new random variableg(X ), which depends onX ; that

is, each value ofg(X ) is determined by the value of X . For instance, g(X ) might
be X 2 or 3X Š 1, and wheneverX assumes the value 2,g(X ) assumes the value
g(2). In particular, if X is a discrete random variable with probability distribution
f (x), for x = Š1, 0, 1, 2, and g(X ) = X 2, then

P[g(X ) = 0] = P(X = 0) = f (0),

P[g(X ) = 1] = P(X = Š1) + P(X = 1) = f (Š1) + f (1),

P[g(X ) = 4] = P(X = 2) = f (2),

and so the probability distribution of g(X ) may be written
g(x) 0 1 4

P[g(X ) = g(x)] f (0) f (Š1) + f (1) f (2)
By the de“nition of the expected value of a random variable, we obtain

µg(X ) = E [g(x)] = 0 f (0) + 1[ f (Š1) + f (1)] + 4 f (2)

= ( Š1)2f (Š1) + (0) 2f (0) + (1) 2f (1) + (2) 2f (2) =
�

x

g(x)f (x).

This result is generalized in Theorem 4.1 for both discrete and continuous random
variables.

Theorem 4.1: Let X be a random variable with probability distribution f (x). The expected
value of the random variableg(X ) is

µg(X ) = E [g(X )] =
�

x

g(x)f (x)

if X is discrete, and

µg(X ) = E [g(X )] =
 �

Š�
g(x)f (x) dx

if X is continuous.
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Example 4.4: Suppose that the number of carsX that pass through a car wash between 4:00
P.M. and 5:00P.M. on any sunny Friday has the following probability distribution:

x 4 5 6 7 8 9
P(X = x) 1

12
1

12
1
4

1
4

1
6

1
6

Let g(X ) = 2 X Š 1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant•s expected earnings for this particular time
period.

Solution : By Theorem 4.1, the attendant can expect to receive

E[g(X )] = E(2X Š 1) =
9�

x =4

(2x Š 1)f (x)

= (7)
�

1
12

�
+ (9)

�
1
12

�
+ (11)

�
1
4

�
+ (13)

�
1
4

�

+ (15)
�

1
6

�
+ (17)

�
1
6

�
= $12.67.

Example 4.5: Let X be a random variable with density function

f (x) =

�
x 2

3 , Š1 < x < 2,
0, elsewhere.

Find the expected value ofg(X ) = 4 X + 3.
Solution : By Theorem 4.1, we have

E(4X + 3) =
 2

Š 1

(4x + 3) x2

3
dx =

1
3

 2

Š 1
(4x3 + 3x2) dx = 8 .

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f (x, y).

De“nition 4.2: Let X and Y be random variables with joint probability distribution f (x, y). The
mean, or expected value, of the random variableg(X, Y ) is

µg(X,Y ) = E [g(X, Y )] =
�

x

�

y

g(x, y)f (x, y)

if X and Y are discrete, and

µg(X,Y ) = E [g(X, Y )] =
 �

Š�

 �

Š�
g(x, y)f (x, y) dx dy

if X and Y are continuous.

Generalization of De“nition 4.2 for the calculation of mathematical expectations
of functions of several random variables is straightforward.
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Example 4.6: Let X and Y be the random variables with joint probability distribution indicated
in Table 3.1 on page 96. Find the expected value ofg(X, Y ) = XY . The table is
reprinted here for convenience.

x Row
f (x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

Solution : By De“nition 4.2, we write

E(XY ) =
2�

x =0

2�

y=0

xyf (x, y)

= (0)(0) f (0, 0) + (0)(1) f (0, 1)

+ (1)(0) f (1, 0) + (1)(1) f (1, 1) + (2)(0) f (2, 0)

= f (1, 1) =
3
14

.

Example 4.7: Find E(Y/X ) for the density function

f (x, y) =

�
x (1+3 y2 )

4 , 0 < x < 2, 0 < y < 1,
0, elsewhere.

Solution : We have

E
�

Y
X

�
=

 1

0

 2

0

y(1 + 3y2)
4

dxdy =
 1

0

y + 3y3

2
dy =

5
8

.

Note that if g(X, Y ) = X in De“nition 4.2, we have

E(X ) =

	
�

�

�

x

�

y
xf (x, y) =

�

x
xg(x) (discrete case),

� �
Š�

� �
Š� xf (x, y) dy dx =

� �
Š� xg(x) dx (continuous case),

where g(x) is the marginal distribution of X . Therefore, in calculating E(X ) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X . Similarly, we de“ne

E(Y ) =

	
�

�

�

y

�

x
yf (x, y) =

�

y
yh(y) (discrete case),

� �
Š�

� �
Š� yf (x, y) dxdy =

� �
Š� yh(y) dy (continuous case),

where h(y) is the marginal distribution of the random variable Y .
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Exercises

4.1 The probability distribution of X , the number of
imperfections per 10 meters of a synthetic fabric in con-
tinuous rolls of uniform width, is given in Exercise 3.13
on page 92 as

x 0 1 2 3 4
f (x) 0.41 0.37 0.16 0.05 0.01

Find the average number of imperfections per 10 me-
ters of this fabric.

4.2 The probability distribution of the discrete ran-
dom variable X is

f (x) =

�
3
x

 �
1
4

� x �
3
4

� 3Š x

, x = 0 , 1, 2, 3.

Find the mean of X .

4.3 Find the mean of the random variable T repre-
senting the total of the three coins in Exercise 3.25 on
page 93.

4.4 A coin is biased such that a head is three times
as likely to occur as a tail. Find the expected number
of tails when this coin is tossed twice.

4.5 In a gambling game, a woman is paid $3 if she
draws a jack or a queen and $5 if she draws a king or
an ace from an ordinary deck of 52 playing cards. If
she draws any other card, she loses. How much should
she pay to play if the game is fair?

4.6 An attendant at a car wash is paid according to
the number of cars that pass through. Suppose the
probabilities are 1/12, 1/12, 1/4, 1/4, 1/6, and 1/6,
respectively, that the attendant receives $7, $9, $11,
$13, $15, or $17 between 4:00P.M. and 5:00 P.M. on
any sunny Friday. Find the attendant•s expected earn-
ings for this particular period.

4.7 By investing in a particular stock, a person can
make a pro“t in one year of $4000 with probability 0.3
or take a loss of $1000 with probability 0.7. What is
this person•s expected gain?

4.8 Suppose that an antique jewelry dealer is inter-
ested in purchasing a gold necklace for which the prob-
abilities are 0.22, 0.36, 0.28, and 0.14, respectively, that
she will be able to sell it for a pro“t of $250, sell it for
a pro“t of $150, break even, or sell it for a loss of $150.
What is her expected pro“t?

4.9 A private pilot wishes to insure his airplane for
$200,000. The insurance company estimates that a to-
tal loss will occur with probability 0.002, a 50% loss
with probability 0.01, and a 25% loss with probability

0.1. Ignoring all other partial losses, what premium
should the insurance company charge each year to re-
alize an average pro“t of $500?

4.10 Two tire-quality experts examine stacks of tires
and assign a quality rating to each tire on a 3-point
scale. Let X denote the rating given by expert A and
Y denote the rating given by B . The following table
gives the joint distribution for X and Y .

y
f (x, y ) 1 2 3

1 0.10 0.05 0.02
x 2 0.10 0.35 0.05

3 0.03 0.10 0.20

Find µX and µY .

4.11 The density function of coded measurements of
the pitch diameter of threads of a “tting is

f (x) =

�
4

� (1+ x 2 ) , 0 < x < 1,

0, elsewhere.

Find the expected value of X .

4.12 If a dealer•s pro“t, in units of $5000, on a new
automobile can be looked upon as a random variable
X having the density function

f (x) =
�

2(1 Š x), 0 < x < 1,
0, elsewhere,

“nd the average pro“t per automobile.

4.13 The density function of the continuous random
variable X , the total number of hours, in units of 100
hours, that a family runs a vacuum cleaner over a pe-
riod of one year, is given in Exercise 3.7 on page 92
as

f (x) =

�
�

	

x, 0 < x < 1,
2 Š x, 1 � x < 2,
0, elsewhere.

Find the average number of hours per year that families
run their vacuum cleaners.

4.14 Find the proportion X of individuals who can be
expected to respond to a certain mail-order solicitation
if X has the density function

f (x) =

�
2( x +2)

5 , 0 < x < 1,
0, elsewhere.
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4.15 Assume that two random variables ( X, Y ) are
uniformly distributed on a circle with radius a. Then
the joint probability density function is

f (x, y ) =
� 1

�a 2 , x2 + y2 � a2,
0, otherwise.

Find µX , the expected value of X .

4.16 Suppose that you are inspecting a lot of 1000
light bulbs, among which 20 are defectives. You choose
two light bulbs randomly from the lot without replace-
ment. Let

X 1 =
�

1, if the 1st light bulb is defective ,
0, otherwise,

X 2 =
�

1, if the 2nd light bulb is defective ,
0, otherwise.

Find the probability that at least one light bulb chosen
is defective. [Hint : Compute P(X 1 + X 2 = 1).]

4.17 Let X be a random variable with the following
probability distribution:

x Š3 6 9
f (x) 1/6 1/2 1/3

Find µg( X ) , where g(X ) = (2 X + 1) 2.

4.18 Find the expected value of the random variable
g(X ) = X 2, where X has the probability distribution
of Exercise 4.2.

4.19 A large industrial “rm purchases several new
word processors at the end of each year, the exact num-
ber depending on the frequency of repairs in the previ-
ous year. Suppose that the number of word processors,
X , purchased each year has the following probability
distribution:

x 0 1 2 3
f (x) 1/10 3/10 2/5 1/5

If the cost of the desired model is $1200 per unit and
at the end of the year a refund of 50X 2 dollars will be
issued, how much can this “rm expect to spend on new
word processors during this year?

4.20 A continuous random variable X has the density
function

f (x) =
�

eŠ x , x > 0,
0, elsewhere.

Find the expected value of g(X ) = e2X/ 3.

4.21 What is the dealer•s average pro“t per auto-
mobile if the pro“t on each automobile is given by
g(X ) = X 2, where X is a random variable having the
density function of Exercise 4.12?

4.22 The hospitalization period, in days, for patients
following treatment for a certain type of kidney disor-
der is a random variable Y = X + 4, where X has the
density function

f (x) =

�
32

( x +4) 3 , x > 0,

0, elsewhere.

Find the average number of days that a person is hos-
pitalized following treatment for this disorder.

4.23 Suppose that X and Y have the following joint
probability function:

x
f (x, y ) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the expected value of g(X, Y ) = XY 2.
(b) Find µX and µY .

4.24 Referring to the random variables whose joint
probability distribution is given in Exercise 3.39 on
page 105,
(a) “nd E (X 2Y Š 2XY );
(b) “nd µX Š µY .

4.25 Referring to the random variables whose joint
probability distribution is given in Exercise 3.51 on
page 106, “nd the mean for the total number of jacks
and kings when 3 cards are drawn without replacement
from the 12 face cards of an ordinary deck of 52 playing
cards.

4.26 Let X and Y be random variables with joint
density function

f (x, y ) =
�

4xy, 0 < x, y < 1,
0, elsewhere.

Find the expected value of Z =
�

X 2 + Y 2.

4.27 In Exercise 3.27 on page 93, a density function
is given for the time to failure of an important compo-
nent of a DVD player. Find the mean number of hours
to failure of the component and thus the DVD player.

4.28 Consider the information in Exercise 3.28 on
page 93. The problem deals with the weight in ounces
of the product in a cereal box, with

f (x) =
� 2

5 , 23.75 � x � 26.25,
0, elsewhere.
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(a) Plot the density function.
(b) Compute the expected value, or mean weight, in

ounces.
(c) Are you surprised at your answer in (b)? Explain

why or why not.

4.29 Exercise 3.29 on page 93 dealt with an impor-
tant particle size distribution characterized by

f (x) =
�

3xŠ 4, x > 1,
0, elsewhere.

(a) Plot the density function.
(b) Give the mean particle size.

4.30 In Exercise 3.31 on page 94, the distribution of
times before a major repair of a washing machine was
given as

f (y) =
� 1

4 eŠ y/ 4 , y � 0,
0, elsewhere.

What is the population mean of the times to repair?

4.31 Consider Exercise 3.32 on page 94.
(a) What is the mean proportion of the budget allo-

cated to environmental and pollution control?
(b) What is the probability that a company selected

at random will have allocated to environmental
and pollution control a proportion that exceeds the
population mean given in (a)?

4.32 In Exercise 3.13 on page 92, the distribution of
the number of imperfections per 10 meters of synthetic
fabric is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

(a) Plot the probability function.
(b) Find the expected number of imperfections,

E (X ) = µ.

(c) Find E (X 2).

4.2 Variance and Covariance of Random Variables
The mean, or expected value, of a random variableX is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 4.1, we have the histograms of two discrete probability distributions that
have the same mean,µ = 2, but di�er considerably in variability, or the dispersion
of their observations about the mean.

1 2 3 0 1 2 3 4
x

(a) (b)

x

Figure 4.1: Distributions with equal means and unequal dispersions.

The most important measure of variability of a random variable X is obtained
by applying Theorem 4.1 with g(X ) = ( X Š µ)2. The quantity is referred to as
the variance of the random variable X or the variance of the probability



120 Chapter 4 Mathematical Expectation

distribution of X and is denoted by Var(X ) or the symbol � 2
X , or simply by � 2

when it is clear to which random variable we refer.

De“nition 4.3: Let X be a random variable with probability distribution f (x) and meanµ. The
variance of X is

� 2 = E [(X Š µ)2] =
�

x

(x Š µ)2f (x), if X is discrete, and

� 2 = E [(X Š µ)2] =
 �

Š�
(x Š µ)2f (x) dx, if X is continuous.

The positive square root of the variance,� , is called thestandard deviation of
X .

The quantity x Š µ in De“nition 4.3 is called the deviation of an observation
from its mean. Since the deviations are squared and then averaged,� 2 will be much
smaller for a set ofx values that are close toµ than it will be for a set of values
that vary considerably from µ.

Example 4.8: Let the random variable X represent the number of automobiles that are used for
o�cial business purposes on any given workday. The probability distribution for
company A [Figure 4.1(a)] is

x 1 2 3
f (x) 0.3 0.4 0.3

and that for company B [Figure 4.1(b)] is

x 0 1 2 3 4
f (x) 0.2 0.1 0.3 0.3 0.1

Show that the variance of the probability distribution for company B is greater
than that for company A.

Solution : For company A, we “nd that

µA = E(X ) = (1)(0 .3) + (2)(0 .4) + (3)(0 .3) = 2 .0,

and then

� 2
A =

3�

x =1

(x Š 2)2 = (1 Š 2)2(0.3) + (2 Š 2)2(0.4) + (3 Š 2)2(0.3) = 0 .6.

For company B , we have

µB = E(X ) = (0)(0 .2) + (1)(0 .1) + (2)(0 .3) + (3)(0 .3) + (4)(0 .1) = 2 .0,

and then

� 2
B =

4�

x =0

(x Š 2)2f (x)

= (0 Š 2)2(0.2) + (1 Š 2)2(0.1) + (2 Š 2)2(0.3)

+ (3 Š 2)2(0.3) + (4 Š 2)2(0.1) = 1 .6.
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Clearly, the variance of the number of automobiles that are used for o�cial business
purposes is greater for companyB than for company A.

An alternative and preferred formula for “nding � 2, which often simpli“es the
calculations, is stated in the following theorem.

Theorem 4.2: The variance of a random variableX is

� 2 = E(X 2) Š µ2.

Proof : For the discrete case, we can write

� 2 =
�

x

(x Š µ)2f (x) =
�

x

(x2 Š 2µx + µ2)f (x)

=
�

x

x2f (x) Š 2µ
�

x

xf (x) + µ2
�

x

f (x).

Since µ =
�

x
xf (x) by de“nition, and

�

x
f (x) = 1 for any discrete probability

distribution, it follows that

� 2 =
�

x

x2f (x) Š µ2 = E(X 2) Š µ2.

For the continuous case the proof is step by step the same, with summations
replaced by integrations.

Example 4.9: Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X .

x 0 1 2 3
f (x) 0.51 0.38 0.10 0.01

Using Theorem 4.2, calculate� 2.
Solution : First, we compute

µ = (0)(0 .51) + (1)(0 .38) + (2)(0 .10) + (3)(0 .01) = 0.61.

Now,

E(X 2) = (0)(0 .51) + (1)(0 .38) + (4)(0 .10) + (9)(0 .01) = 0.87.

Therefore,

� 2 = 0 .87Š (0.61)2 = 0 .4979.

Example 4.10: The weekly demand for a drinking-water product, in thousands of liters, from
a local chain of e�ciency stores is a continuous random variableX having the
probability density

f (x) =
�

2(x Š 1), 1 < x < 2,
0, elsewhere.

Find the mean and variance ofX .
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Solution : Calculating E(X ) and E(X 2, we have

µ = E(X ) = 2
 2

1
x(x Š 1) dx =

5
3

and

E(X 2) = 2
 2

1
x2(x Š 1) dx =

17
6

.

Therefore,

� 2 =
17
6

Š
�

5
3

� 2

=
1
18

.

At this point, the variance or standard deviation has meaning only when we
compare two or more distributions that have the same units of measurement.
Therefore, we could compare the variances of the distributions of contents, mea-
sured in liters, of bottles of orange juice from two companies, and the larger value
would indicate the company whose product was more variable or less uniform. It
would not be meaningful to compare the variance of a distribution of heights to
the variance of a distribution of aptitude scores. In Section 4.4, we show how the
standard deviation can be used to describe a single distribution of observations.

We shall now extend our concept of the variance of a random variableX to
include random variables related toX . For the random variable g(X ), the variance
is denoted by � 2

g(X ) and is calculated by means of the following theorem.

Theorem 4.3: Let X be a random variable with probability distribution f (x). The variance of
the random variable g(X ) is

� 2
g(X ) = E{ [g(X ) Š µg(X ) ]

2} =
�

x

[g(x) Š µg(X ) ]
2f (x)

if X is discrete, and

� 2
g(X ) = E{ [g(X ) Š µg(X ) ]

2} =
 �

Š�
[g(x) Š µg(X ) ]

2f (x) dx

if X is continuous.

Proof : Sinceg(X ) is itself a random variable with mean µg(X ) as de“ned in Theorem 4.1,
it follows from De“nition 4.3 that

� 2
g(X ) = E{ [g(X ) Š µg(X ) ]} .

Now, applying Theorem 4.1 again to the random variable [g(X )Š µg(X ) ]2 completes
the proof.

Example 4.11: Calculate the variance of g(X ) = 2 X + 3, where X is a random variable with
probability distribution

x 0 1 2 3

f (x) 1
4

1
8

1
2

1
8
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Solution : First, we “nd the mean of the random variable 2X +3. According to Theorem 4.1,

µ2X +3 = E(2X + 3) =
3�

x =0

(2x + 3) f (x) = 6 .

Now, using Theorem 4.3, we have

� 2
2X +3 = E{ [(2X + 3) Š µ2x +3 ]2} = E [(2X + 3 Š 6)2]

= E(4X 2 Š 12X + 9) =
3�

x =0

(4x2 Š 12x + 9) f (x) = 4 .

Example 4.12: Let X be a random variable having the density function given in Example 4.5 on
page 115. Find the variance of the random variableg(X ) = 4 X + 3.

Solution : In Example 4.5, we found that µ4X +3 = 8. Now, using Theorem 4.3,

� 2
4X +3 = E{ [(4X + 3) Š 8]2} = E [(4X Š 5)2]

=
 2

Š 1
(4x Š 5)2 x2

3
dx =

1
3

 2

Š 1
(16x4 Š 40x3 + 25x2) dx =

51
5

.

If g(X, Y ) = ( X Š µX )(Y Š µY ), where µX = E(X ) and µY = E(Y ), De“nition
4.2 yields an expected value called thecovariance of X and Y , which we denote
by � XY or Cov(X, Y ).

De“nition 4.4: Let X and Y be random variables with joint probability distribution f (x, y). The
covariance ofX and Y is

� XY = E [(X Š µX )(Y Š µY )] =
�

x

�

y

(x Š µX )(y Š µy )f (x, y)

if X and Y are discrete, and

� XY = E [(X Š µX )(Y Š µY )] =
 �

Š�

 �

Š�
(x Š µX )(y Š µy )f (x, y) dx dy

if X and Y are continuous.

The covariance between two random variables is a measure of the nature of the
association between the two. If large values ofX often result in large values ofY
or small values ofX result in small values ofY , positive X Š µX will often result in
positive Y Š µY and negativeX Š µX will often result in negative Y Š µY . Thus, the
product (X Š µX )(Y Š µY ) will tend to be positive. On the other hand, if large X
values often result in smallY values, the product (X Š µX )(Y Š µY ) will tend to be
negative. Thesign of the covariance indicates whether the relationship between two
dependent random variables is positive or negative. WhenX and Y are statistically
independent, it can be shown that the covariance is zero (see Corollary 4.5). The
converse, however, is not generally true. Two variables may have zero covariance
and still not be statistically independent. Note that the covariance only describes
the linear relationship between two random variables. Therefore, if a covariance
betweenX and Y is zero,X and Y may have a nonlinear relationship, which means
that they are not necessarily independent.
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The alternative and preferred formula for � XY is stated by Theorem 4.4.

Theorem 4.4: The covariance of two random variablesX and Y with means µX and µY , respec-
tively, is given by

� XY = E(XY ) Š µX µY .

Proof : For the discrete case, we can write

� XY =
�

x

�

y

(x Š µX )(y Š µY )f (x, y)

=
�

x

�

y

xyf (x, y) Š µX

�

x

�

y

yf (x, y)

Š µY

�

x

�

y

xf (x, y) + µX µY

�

x

�

y

f (x, y).

Since

µX =
�

x

xf (x, y), µY =
�

y

yf (x, y), and
�

x

�

y

f (x, y) = 1

for any joint discrete distribution, it follows that

� XY = E(XY ) Š µX µY Š µY µX + µX µY = E(XY ) Š µX µY .

For the continuous case, the proof is identical with summations replaced by inte-
grals.

Example 4.13: Example 3.14 on page 95 describes a situation involving the number of blue re“lls
X and the number of red re“lls Y . Two re“lls for a ballpoint pen are selected at
random from a certain box, and the following is the joint probability distribution:

x
f (x, y) 0 1 2 h(y)

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

g(x) 5
14

15
28

3
28 1

Find the covariance of X and Y .
Solution : From Example 4.6, we see thatE(XY ) = 3 / 14. Now

µX =
2�

x =0

xg(x) = (0)
�

5
14

�
+ (1)

�
15
28

�
+ (2)

�
3
28

�
=

3
4

,

and

µY =
2�

y=0

yh(y) = (0)
�

15
28

�
+ (1)

�
3
7

�
+ (2)

�
1
28

�
=

1
2

.
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Therefore,

� XY = E(XY ) Š µX µY =
3
14

Š
�

3
4

� �
1
2

�
= Š

9
56

.

Example 4.14: The fraction X of male runners and the fractionY of female runners who compete
in marathon races are described by the joint density function

f (x, y) =
�

8xy, 0 � y � x � 1,
0, elsewhere.

Find the covariance of X and Y .
Solution : We “rst compute the marginal density functions. They are

g(x) =
�

4x3, 0 � x � 1,
0, elsewhere,

and

h(y) =
�

4y(1 Š y2), 0 � y � 1,
0, elsewhere.

From these marginal density functions, we compute

µX = E(X ) =
 1

0
4x4 dx =

4
5

and µY =
 1

0
4y2(1 Š y2) dy =

8
15

.

From the joint density function given above, we have

E(XY ) =
 1

0

 1

y
8x2y2 dx dy =

4
9

.

Then

� XY = E(XY ) Š µX µY =
4
9

Š
�

4
5

� �
8
15

�
=

4
225

.

Although the covariance between two random variables does provide informa-
tion regarding the nature of the relationship, the magnitude of � XY does not indi-
cate anything regarding the strength of the relationship, since� XY is not scale-free.
Its magnitude will depend on the units used to measure bothX and Y . There is a
scale-free version of the covariance called thecorrelation coe�cient that is used
widely in statistics.

De“nition 4.5: Let X and Y be random variables with covariance� XY and standard deviations
� X and � Y , respectively. The correlation coe�cient of X and Y is

� XY =
� XY

� X � Y

.

It should be clear to the reader that � XY is free of the units of X and Y . The
correlation coe�cient satis“es the inequality Š1 � � XY � 1. It assumes a value of
zero when� XY = 0. Where there is an exact linear dependency, sayY � a + bX,
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� XY = 1 if b > 0 and � XY = Š1 if b < 0. (See Exercise 4.48.) The correlation
coe�cient is the subject of more discussion in Chapter 12, where we deal with
linear regression.

Example 4.15: Find the correlation coe�cient between X and Y in Example 4.13.
Solution : Since

E(X 2) = (0 2)
�

5
14

�
+ (1 2)

�
15
28

�
+ (2 2)

�
3
28

�
=

27
28

and

E(Y 2) = (0 2)
�

15
28

�
+ (1 2)

�
3
7

�
+ (2 2)

�
1
28

�
=

4
7

,

we obtain

� 2
X =

27
28

Š
�

3
4

� 2

=
45
112

and � 2
Y =

4
7

Š
�

1
2

� 2

=
9
28

.

Therefore, the correlation coe�cient between X and Y is

� XY =
� XY

� X � Y
=

Š9/ 56
�

(45/ 112)(9/ 28)
= Š

1
�

5
.

Example 4.16: Find the correlation coe�cient of X and Y in Example 4.14.
Solution : Because

E(X 2) =
 1

0
4x5 dx =

2
3

and E(Y 2) =
 1

0
4y3(1 Š y2) dy = 1 Š

2
3

=
1
3

,

we conclude that

� 2
X =

2
3

Š
�

4
5

� 2

=
2
75

and � 2
Y =

1
3

Š
�

8
15

� 2

=
11
225

.

Hence,

� XY =
4/ 225

�
(2/ 75)(11/ 225)

=
4

�
66

.

Note that although the covariance in Example 4.15 is larger in magnitude (dis-
regarding the sign) than that in Example 4.16, the relationship of the magnitudes
of the correlation coe�cients in these two examples is just the reverse. This is
evidence that we cannot look at the magnitude of the covariance to decide on how
strong the relationship is.
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Exercises

4.33 Use De“nition 4.3 on page 120 to “nd the vari-
ance of the random variable X of Exercise 4.7 on page
117.

4.34 Let X be a random variable with the following
probability distribution:

x Š2 3 5
f (x) 0.3 0.2 0.5

Find the standard deviation of X .

4.35 The random variable X , representing the num-
ber of errors per 100 lines of software code, has the
following probability distribution:

x 2 3 4 5 6
f (x) 0.01 0.25 0.4 0.3 0.04

Using Theorem 4.2 on page 121, “nd the variance of
X .

4.36 Suppose that the probabilities are 0.4, 0.3, 0.2,
and 0.1, respectively, that 0, 1, 2, or 3 power failures
will strike a certain subdivision in any given year. Find
the mean and variance of the random variable X repre-
senting the number of power failures striking this sub-
division.

4.37 A dealer•s pro“t, in units of $5000, on a new
automobile is a random variable X having the density
function given in Exercise 4.12 on page 117. Find the
variance of X .

4.38 The proportion of people who respond to a cer-
tain mail-order solicitation is a random variable X hav-
ing the density function given in Exercise 4.14 on page
117. Find the variance of X .

4.39 The total number of hours, in units of 100 hours,
that a family runs a vacuum cleaner over a period of
one year is a random variable X having the density
function given in Exercise 4.13 on page 117. Find the
variance of X .

4.40 Referring to Exercise 4.14 on page 117, “nd
� 2

g( X ) for the function g(X ) = 3 X 2 + 4.

4.41 Find the standard deviation of the random vari-
able g(X ) = (2 X + 1) 2 in Exercise 4.17 on page 118.

4.42 Using the results of Exercise 4.21 on page 118,
“nd the variance of g(X ) = X 2, where X is a random
variable having the density function given in Exercise
4.12 on page 117.

4.43 The length of time, in minutes, for an airplane
to obtain clearance for takeo� at a certain airport is a

random variable Y = 3 X Š 2, where X has the density
function

f (x) =
� 1

4 eŠ x/ 4 , x > 0
0, elsewhere.

Find the mean and variance of the random variable Y .

4.44 Find the covariance of the random variables X
and Y of Exercise 3.39 on page 105.

4.45 Find the covariance of the random variables X
and Y of Exercise 3.49 on page 106.

4.46 Find the covariance of the random variables X
and Y of Exercise 3.44 on page 105.

4.47 For the random variables X and Y whose joint
density function is given in Exercise 3.40 on page 105,
“nd the covariance.

4.48 Given a random variable X , with standard de-
viation � X , and a random variable Y = a + bX , show
that if b < 0, the correlation coe�cient � XY = Š1, and
if b > 0, � XY = 1.

4.49 Consider the situation in Exercise 4.32 on page
119. The distribution of the number of imperfections
per 10 meters of synthetic failure is given by

x 0 1 2 3 4
f (x) 0.41 0.37 0.16 0.05 0.01

Find the variance and standard deviation of the num-
ber of imperfections.

4.50 For a laboratory assignment, if the equipment is
working, the density function of the observed outcome
X is

f (x) =
�

2(1 Š x), 0 < x < 1,
0, otherwise.

Find the variance and standard deviation of X .

4.51 For the random variables X and Y in Exercise
3.39 on page 105, determine the correlation coe�cient
between X and Y .

4.52 Random variables X and Y follow a joint distri-
bution

f (x, y ) =
�

2, 0 < x � y < 1,
0, otherwise.

Determine the correlation coe�cient between X and
Y .
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4.3 Means and Variances of Linear Combinations of
Random Variables

We now develop some useful properties that will simplify the calculations of means
and variances of random variables that appear in later chapters. These properties
will permit us to deal with expectations in terms of other parameters that are
either known or easily computed. All the results that we present here are valid
for both discrete and continuous random variables. Proofs are given only for the
continuous case. We begin with a theorem and two corollaries that should be,
intuitively, reasonable to the reader.

Theorem 4.5: If a and b are constants, then

E(aX + b) = aE(X ) + b.

Proof : By the de“nition of expected value,

E(aX + b) =
 �

Š�
(ax + b)f (x) dx = a

 �

Š�
xf (x) dx + b

 �

Š�
f (x) dx.

The “rst integral on the right is E(X ) and the second integral equals 1. Therefore,
we have

E(aX + b) = aE(X ) + b.

Corollary 4.1: Setting a = 0, we see that E(b) = b.

Corollary 4.2: Setting b = 0, we see that E(aX ) = aE(X ).

Example 4.17: Applying Theorem 4.5 to the discrete random variable f (X ) = 2 X Š 1, rework
Example 4.4 on page 115.

Solution : According to Theorem 4.5, we can write

E(2X Š 1) = 2E(X ) Š 1.

Now

µ = E(X ) =
9�

x =4

xf (x)

= (4)
�

1
12

�
+ (5)

�
1
12

�
+ (6)

�
1
4

�
+ (7)

�
1
4

�
+ (8)

�
1
6

�
+ (9)

�
1
6

�
=

41
6

.

Therefore,

µ2X Š 1 = (2)
�

41
6

�
Š 1 = $12.67,

as before.
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Example 4.18: Applying Theorem 4.5 to the continuous random variableg(X ) = 4 X + 3, rework
Example 4.5 on page 115.

Solution : For Example 4.5, we may use Theorem 4.5 to write

E(4X + 3) = 4 E(X ) + 3 .

Now

E(X ) =
 2

Š 1
x

�
x2

3

�
dx =

 2

Š 1

x3

3
dx =

5
4

.

Therefore,

E (4X + 3) = (4)
�

5
4

�
+ 3 = 8 ,

as before.

Theorem 4.6: The expected value of the sum or di�erence of two or more functions of a random
variable X is the sum or di�erence of the expected values of the functions. That
is,

E [g(X ) ± h(X )] = E [g(X )] ± E [h(X )].

Proof : By de“nition,

E [g(X ) ± h(X )] =
 �

Š�
[g(x) ± h(x)]f (x) dx

=
 �

Š�
g(x)f (x) dx ±

 �

Š�
h(x)f (x) dx

= E[g(X )] ± E [h(X )].

Example 4.19: Let X be a random variable with probability distribution as follows:
x 0 1 2 3

f (x) 1
3

1
2 0 1

6

Find the expected value ofY = ( X Š 1)2.
Solution : Applying Theorem 4.6 to the function Y = ( X Š 1)2, we can write

E [(X Š 1)2] = E(X 2 Š 2X + 1) = E(X 2) Š 2E(X ) + E(1).

From Corollary 4.1, E(1) = 1, and by direct computation,

E (X ) = (0)
�

1
3

�
+ (1)

�
1
2

�
+ (2)(0) + (3)

�
1
6

�
= 1 and

E(X 2) = (0)
�

1
3

�
+ (1)

�
1
2

�
+ (4)(0) + (9)

�
1
6

�
= 2 .

Hence,

E [(X Š 1)2] = 2 Š (2)(1) + 1 = 1 .
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Example 4.20: The weekly demand for a certain drink, in thousands of liters, at a chain of con-
venience stores is a continuous random variableg(X ) = X 2 + X Š 2, whereX has
the density function

f (x) =
�

2(x Š 1), 1 < x < 2,
0, elsewhere.

Find the expected value of the weekly demand for the drink.
Solution : By Theorem 4.6, we write

E(X 2 + X Š 2) = E(X 2) + E(X ) Š E(2).

From Corollary 4.1, E(2) = 2, and by direct integration,

E (X ) =
 2

1
2x(x Š 1) dx =

5
3

and E(X 2) =
 2

1
2x2(x Š 1) dx =

17
6

.

Now

E(X 2 + X Š 2) =
17
6

+
5
3

Š 2 =
5
2

,

so the average weekly demand for the drink from this chain of e�ciency stores is
2500 liters.

Suppose that we have two random variablesX and Y with joint probability dis-
tribution f (x, y). Two additional properties that will be very useful in succeeding
chapters involve the expected values of the sum, di�erence, and product of these
two random variables. First, however, let us prove a theorem on the expected
value of the sum or di�erence of functions of the given variables. This, of course,
is merely an extension of Theorem 4.6.

Theorem 4.7: The expected value of the sum or di�erence of two or more functions of the random
variables X and Y is the sum or di�erence of the expected values of the functions.
That is,

E [g(X, Y ) ± h(X, Y )] = E [g(X, Y )] ± E [h(X, Y )].

Proof : By De“nition 4.2,

E [g(X, Y ) ± h(X, Y )] =
 �

Š�

 �

Š�
[g(x, y) ± h(x, y)]f (x, y) dx dy

=
 �

Š�

 �

Š�
g(x, y)f (x, y) dx dy ±

 �

Š�

 �

Š�
h(x, y)f (x, y) dx dy

= E[g(X, Y )] ± E [h(X, Y )].

Corollary 4.3: Setting g(X, Y ) = g(X ) and h(X, Y ) = h(Y ), we see that

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )].
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Corollary 4.4: Setting g(X, Y ) = X and h(X, Y ) = Y , we see that

E [X ± Y ] = E[X ] ± E[Y ].

If X represents the daily production of some item from machineA and Y the
daily production of the same kind of item from machineB , then X + Y represents
the total number of items produced daily by both machines. Corollary 4.4 states
that the average daily production for both machines is equal to the sum of the
average daily production of each machine.

Theorem 4.8: Let X and Y be two independent random variables. Then

E(XY ) = E(X )E(Y ).

Proof : By De“nition 4.2,

E (XY ) =
 �

Š�

 �

Š�
xyf (x, y) dx dy.

SinceX and Y are independent, we may write

f (x, y) = g(x)h(y),

whereg(x) and h(y) are the marginal distributions of X and Y , respectively. Hence,

E(XY ) =
 �

Š�

 �

Š�
xyg(x)h(y) dx dy =

 �

Š�
xg(x) dx

 �

Š�
yh(y) dy

= E(X )E(Y ).
Theorem 4.8 can be illustrated for discrete variables by considering the exper-

iment of tossing a green die and a red die. Let the random variableX represent
the outcome on the green die and the random variableY represent the outcome
on the red die. ThenXY represents the product of the numbers that occur on the
pair of dice. In the long run, the average of the products of the numbers is equal
to the product of the average number that occurs on the green die and the average
number that occurs on the red die.

Corollary 4.5: Let X and Y be two independent random variables. Then� XY = 0.

Proof : The proof can be carried out by using Theorems 4.4 and 4.8.

Example 4.21: It is known that the ratio of gallium to arsenide does not a�ect the functioning
of gallium-arsenide wafers, which are the main components of microchips. LetX
denote the ratio of gallium to arsenide andY denote the functional wafers retrieved
during a 1-hour period. X and Y are independent random variables with the joint
density function

f (x, y) =

�
x (1+3 y2 )

4 , 0 < x < 2, 0 < y < 1,
0, elsewhere.
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Show that E(XY ) = E(X )E(Y ), as Theorem 4.8 suggests.
Solution : By de“nition,

E (XY ) =
 1

0

 2

0

x2y(1 + 3y2)
4

dxdy =
5
6

, E(X ) =
4
3

, and E(Y ) =
5
8

.

Hence,

E(X )E(Y ) =
�

4
3

� �
5
8

�
=

5
6

= E(XY ).

We conclude this section by proving one theorem and presenting several corol-
laries that are useful for calculating variances or standard deviations.

Theorem 4.9: If X and Y are random variables with joint probability distribution f (x, y) and a,
b, and c are constants, then

� 2
aX + bY + c = a2� 2

X + b2� 2
Y + 2ab� XY .

Proof : By de“nition, � 2
aX + bY + c = E{ [(aX + bY + c) Š µaX + bY + c]2} . Now

µaX + bY + c = E(aX + bY + c) = aE(X ) + bE(Y) + c = aµX + bµY + c,

by using Corollary 4.4 followed by Corollary 4.2. Therefore,

� 2
aX + bY + c = E{ [a(X Š µX ) + b(Y Š µY )]2}

= a2E [(X Š µX )2] + b2E [(Y Š µY )2] + 2abE[(X Š µX )(Y Š µY )]

= a2� 2
X + b2� 2

Y + 2ab� XY .

Using Theorem 4.9, we have the following corollaries.

Corollary 4.6: Setting b = 0, we see that

� 2
aX + c = a2� 2

X = a2� 2.

Corollary 4.7: Setting a = 1 and b = 0, we see that

� 2
X + c = � 2

X = � 2.

Corollary 4.8: Setting b = 0 and c = 0, we see that

� 2
aX = a2� 2

X = a2� 2.

Corollaries 4.6 and 4.7 state that the variance is unchanged if a constant is
added to or subtracted from a random variable. The addition or subtraction of
a constant simply shifts the values ofX to the right or to the left but does not
change their variability. However, if a random variable is multiplied or divided by
a constant, then Corollaries 4.6 and 4.8 state that the variance is multiplied or
divided by the square of the constant.
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Corollary 4.9: If X and Y are independent random variables, then

� 2
aX + bY = a2� 2

X + b2� 2
Y .

The result stated in Corollary 4.9 is obtained from Theorem 4.9 by invoking
Corollary 4.5.

Corollary 4.10: If X and Y are independent random variables, then

� 2
aX Š bY = a2� 2

X + b2� 2
Y .

Corollary 4.10 follows whenb in Corollary 4.9 is replaced byŠb. Generalizing
to a linear combination of n independent random variables, we have Corollary 4.11.

Corollary 4.11: If X 1, X 2, . . . , X n are independent random variables, then

� 2
a1 X 1 + a2 X 2 + ··· + an X n

= a2
1� 2

X 1
+ a2

2� 2
X 2

+ · · · + a2
n � 2

X n
.

Example 4.22: If X and Y are random variables with variances� 2
X = 2 and � 2

Y = 4 and covariance
� XY = Š2, “nd the variance of the random variable Z = 3X Š 4Y + 8.

Solution :
� 2

Z = � 2
3X Š 4Y +8 = � 2

3X Š 4Y (by Corollary 4.6)

= 9 � 2
X + 16� 2

Y Š 24� XY (by Theorem 4.9)
= (9)(2) + (16)(4) Š (24)(Š2) = 130.

Example 4.23: Let X and Y denote the amounts of two di�erent types of impurities in a batch
of a certain chemical product. Suppose thatX and Y are independent random
variables with variances � 2

X = 2 and � 2
Y = 3. Find the variance of the random

variable Z = 3X Š 2Y + 5.
Solution :

� 2
Z = � 2

3X Š 2Y +5 = � 2
3X Š 2Y (by Corollary 4.6)

= 9 � 2
x + 4 � 2

y (by Corollary 4.10)

= (9)(2) + (4)(3) = 30 .

What If the Function Is Nonlinear?
In that which has preceded this section, we have dealt with properties of linear
functions of random variables for very important reasons. Chapters 8 through 15
will discuss and illustrate practical real-world problems in which the analyst is
constructing a linear model to describe a data set and thus to describe or explain
the behavior of a certain scienti“c phenomenon. Thus, it is natural that expected
values and variances of linear combinations of random variables are encountered.
However, there are situations in which properties ofnonlinear functions of random
variables become important. Certainly there are many scienti“c phenomena that
are nonlinear, and certainly statistical modeling using nonlinear functions is very
important. In fact, in Chapter 12, we deal with the modeling of what have become
standard nonlinear models. Indeed, even a simple function of random variables,
such asZ = X/Y , occurs quite frequently in practice, and yet unlike in the case of
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the expected value of linear combinations of random variables, there is no simple
general rule. For example,

E (Z ) = E(X/Y ) �= E(X )/E (Y ),

except in very special circumstances.
The material provided by Theorems 4.5 through 4.9 and the various corollaries

is extremely useful in that there are no restrictions on the form of the density or
probability functions, apart from the property of independence when it is required
as in the corollaries following Theorems 4.9. To illustrate, consider Example 4.23;
the variance ofZ = 3X Š 2Y +5 does not require restrictions on the distributions of
the amounts X and Y of the two types of impurities. Only independence between
X and Y is required. Now, we do have at our disposal the capacity to “ndµg(X )

and � 2
g(X ) for any function g(·) from “rst principles established in Theorems 4.1

and 4.3, where it is assumed that the corresponding distributionf (x) is known .
Exercises 4.40, 4.41, and 4.42, among others, illustrate the use of these theorems.
Thus, if the function g(x) is nonlinear and the density function (or probability
function in the discrete case) is known,µg(X ) and � 2

g(X ) can be evaluated exactly.
But, similar to the rules given for linear combinations, are there rules for nonlinear
functions that can be used when the form of the distribution of the pertinent
random variables is not known?

In general, supposeX is a random variable andY = g(x). The general solution
for E(Y ) or Var( Y ) can be di�cult to “nd and depends on the complexity of the
function g(·). However, there are approximations available that depend on a linear
approximation of the function g(x). For example, suppose we denoteE(X ) as µ
and Var(X ) = � 2

X . Then a Taylor series approximation of g(x) around X = µX

gives

g(x) = g(µX ) +
�g (x)

�x

�
�
�
�
x = µ X

(x Š µX ) +
� 2g(x)

�x 2

�
�
�
�
x = µ X

(x Š µX )2

2
+ · · · .

As a result, if we truncate after the linear term and take the expected value of both
sides, we obtainE [g(X )] � g(µX ), which is certainly intuitive and in some cases
gives a reasonable approximation. However, if we include the second-order term
of the Taylor series, then we have a second-order adjustment for this“rst-order
approximation as follows:

Approximation of
E [g(X )] E [g(X )] � g(µX ) +

� 2g(x)
�x 2

�
�
�
�
x = µ X

� 2
X

2
.

Example 4.24: Given the random variableX with mean µX and variance� 2
X , give the second-order

approximation to E(eX ).
Solution : Since �e x

�x = ex and � 2 ex

�x 2 = ex , we obtain E(eX ) � eµ X (1 + � 2
X / 2).

Similarly, we can develop an approximation for Var[g(x)] by taking the variance
of both sides of the “rst-order Taylor series expansion ofg(x).

Approximation of
Var[g(X )] Var[g(X )] �

�
�g (x)

�x

� 2

x = µ X

� 2
X .

Example 4.25: Given the random variable X as in Example 4.24, give an approximate formula for
Var[g(x)].
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Solution : Again �e x

�x = ex ; thus, Var( X ) � e2µ X � 2
X .

These approximations can be extended to nonlinear functions of more than one
random variable.

Given a set of independent random variablesX 1, X 2, . . . , X k with means µ1,
µ2, . . . , µk and variances� 2

1, � 2
2, . . . , � 2

k , respectively, let

Y = h(X 1, X 2, . . . , X k )

be a nonlinear function; then the following are approximations for E(Y ) and
Var( Y ):

E (Y ) � h(µ1, µ2, . . . , µk ) +
k�

i =1

� 2
i

2

�
� 2h(x1, x2, . . . , xk )

�x 2
i

� �
�
�
�
x i = µ i , 1� i � k

,

Var( Y ) �
k�

i =1

�
�h (x1, x2, . . . , xk )

�x i

� 2
�
�
�
�
�
x i = µ i , 1� i � k

� 2
i .

Example 4.26: Consider two independent random variablesX and Z with means µX and µZ and
variances� 2

X and � 2
Z , respectively. Consider a random variable

Y = X/Z.

Give approximations for E(Y ) and Var(Y ).
Solution : For E(Y ), we must use �y

�x = 1
z and �y

�z = Š x
z2 . Thus,

� 2y
�x 2 = 0 and

� 2y
�z 2 =

2x
z3 .

As a result,

E (Y ) �
µX

µZ

+
µX

µ3
Z

� 2
Z =

µX

µZ

�
1 +

� 2
Z

µ2
Z

�
,

and the approximation for the variance of Y is given by

Var( Y ) �
1

µ2
Z

� 2
X +

µ2
X

µ4
Z

� 2
Z =

1
µ2

Z

�
� 2

X +
µ2

X

µ2
Z

� 2
Z

�
.

4.4 Chebyshev•s Theorem
In Section 4.2 we stated that the variance of a random variable tells us something
about the variability of the observations about the mean. If a random variable
has a small variance or standard deviation, we would expect most of the values to
be grouped around the mean. Therefore, the probability that the random variable
assumes a value within a certain interval about the mean is greater than for a
similar random variable with a larger standard deviation. If we think of probability
in terms of area, we would expect a continuous distribution with a large value of
� to indicate a greater variability, and therefore we should expect the area to
be more spread out, as in Figure 4.2(a). A distribution with a small standard
deviation should have most of its area close toµ, as in Figure 4.2(b).
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xµ
(a)

xµ
(b)

Figure 4.2: Variability of continuous observations about the mean.

µ x

(a)
µ x

(b)

Figure 4.3: Variability of discrete observations about the mean.

We can argue the same way for a discrete distribution. The area in the prob-
ability histogram in Figure 4.3(b) is spread out much more than that in Figure
4.3(a) indicating a more variable distribution of measurements or outcomes.

The Russian mathematician P. L. Chebyshev (1821…1894) discovered that the
fraction of the area between any two values symmetric about the mean is related
to the standard deviation. Since the area under a probability distribution curve
or in a probability histogram adds to 1, the area between any two numbers is the
probability of the random variable assuming a value between these numbers.

The following theorem, due to Chebyshev, gives a conservative estimate of the
probability that a random variable assumes a value within k standard deviations
of its mean for any real numberk.
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Theorem 4.10: (Chebyshev•s Theorem) The probability that any random variable X will as-
sume a value within k standard deviations of the mean is at least 1Š 1/k 2. That
is,

P(µ Š k� < X < µ + k� ) � 1 Š
1
k2 .

For k = 2, the theorem states that the random variable X has a probability of
at least 1Š 1/ 22 = 3 / 4 of falling within two standard deviations of the mean. That
is, three-fourths or more of the observations of any distribution lie in the interval
µ ± 2� . Similarly, the theorem says that at least eight-ninths of the observations
of any distribution fall in the interval µ ± 3� .

Example 4.27: A random variable X has a meanµ = 8, a variance � 2 = 9, and an unknown
probability distribution. Find

(a) P(Š4 < X < 20),

(b) P(|X Š 8| � 6).

Solution : (a) P(Š4 < X < 20) = P[8 Š (4)(3) < X < 8 + (4)(3)] � 15
16 .

(b) P(|X Š 8| � 6) = 1 Š P(|X Š 8| < 6) = 1 Š P(Š6 < X Š 8 < 6)

= 1 Š P[8 Š (2)(3) < X < 8 + (2)(3)] �
1
4

.

Chebyshev•s theorem holds for any distribution of observations, and for this
reason the results are usually weak. The value given by the theorem is a lower
bound only. That is, we know that the probability of a random variable falling
within two standard deviations of the mean can beno lessthan 3/4, but we never
know how much more it might actually be. Only when the probability distribution
is known can we determine exact probabilities. For this reason we call the theorem
a distribution-free result. When speci“c distributions are assumed, as in future
chapters, the results will be less conservative. The use of Chebyshev•s theorem is
relegated to situations where the form of the distribution is unknown.

Exercises

4.53 Referring to Exercise 4.35 on page 127, “nd the
mean and variance of the discrete random variable
Z = 3 X Š 2, when X represents the number of errors
per 100 lines of code.

4.54 Using Theorem 4.5 and Corollary 4.6, “nd the
mean and variance of the random variable Z = 5 X +3,
where X has the probability distribution of Exercise
4.36 on page 127.

4.55 Suppose that a grocery store purchases 5 car-
tons of skim milk at the wholesale price of $1.20 per
carton and retails the milk at $1.65 per carton. After
the expiration date, the unsold milk is removed from
the shelf and the grocer receives a credit from the dis-

tributor equal to three-fourths of the wholesale price.
If the probability distribution of the random variable
X , the number of cartons that are sold from this lot,
is

x 0 1 2 3 4 5
f (x) 1

15
2

15
2

15
3

15
4

15
3

15

“nd the expected pro“t.

4.56 Repeat Exercise 4.43 on page 127 by applying
Theorem 4.5 and Corollary 4.6.

4.57 Let X be a random variable with the following
probability distribution:

x Š3 6 9
f (x) 1

6
1
2

1
3
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Find E (X ) and E (X 2) and then, using these values,
evaluate E [(2X + 1) 2].

4.58 The total time, measured in units of 100 hours,
that a teenager runs her hair dryer over a period of one
year is a continuous random variable X that has the
density function

f (x) =

�
�

	

x, 0 < x < 1,
2 Š x, 1 � x < 2,
0, elsewhere.

Use Theorem 4.6 to evaluate the mean of the random
variable Y = 60X 2 + 39X , where Y is equal to the
number of kilowatt hours expended annually.

4.59 If a random variable X is de“ned such that

E [(X Š 1)2] = 10 and E [(X Š 2)2] = 6 ,

“nd µ and � 2.

4.60 Suppose that X and Y are independent random
variables having the joint probability distribution

x
f (x, y ) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

Find
(a) E (2X Š 3Y );
(b) E (XY ).

4.61 Use Theorem 4.7 to evaluate E (2XY 2 Š X 2Y )
for the joint probability distribution shown in Table
3.1 on page 96.

4.62 If X and Y are independent random variables
with variances � 2

X = 5 and � 2
Y = 3, “nd the variance

of the random variable Z = Š2X + 4 Y Š 3.

4.63 Repeat Exercise 4.62 if X and Y are not inde-
pendent and � XY = 1.

4.64 Suppose that X and Y are independent random
variables with probability densities and

g(x) =
� 8

x 3 , x > 2,
0, elsewhere,

and

h(y) =
�

2y, 0 < y < 1,
0, elsewhere.

Find the expected value of Z = XY .

4.65 Let X represent the number that occurs when a
red die is tossed andY the number that occurs when
a green die is tossed. Find
(a) E (X + Y );
(b) E (X Š Y );
(c) E (XY ).

4.66 Let X represent the number that occurs when a
green die is tossed andY the number that occurs when
a red die is tossed. Find the variance of the random
variable
(a) 2X Š Y ;
(b) X + 3 Y Š 5.

4.67 If the joint density function of X and Y is given
by

f (x, y ) =
� 2

7 (x + 2 y), 0 < x < 1, 1 < y < 2,
0, elsewhere,

“nd the expected value of g(X, Y ) = X
Y 3 + X 2Y .

4.68 The power P in watts which is dissipated in an
electric circuit with resistance R is known to be given
by P = I 2R, where I is current in amperes and R is a
constant “xed at 50 ohms. However, I is a random vari-
able with µI = 15 amperes and � 2

I = 0 .03 amperes2.
Give numerical approximations to the mean and vari-
ance of the power P .

4.69 Consider Review Exercise 3.77 on page 108. The
random variables X and Y represent the number of ve-
hicles that arrive at two separate street corners during
a certain 2-minute period in the day. The joint distri-
bution is

f (x, y ) =
�

1
4( x + y )

� �
9
16

�
,

for x = 0 , 1, 2, . . . and y = 0 , 1, 2, . . . .
(a) Give E (X ), E (Y ), Var( X ), and Var( Y ).
(b) Consider Z = X + Y , the sum of the two. Find

E (Z ) and Var( Z ).

4.70 Consider Review Exercise 3.64 on page 107.
There are two service lines. The random variables X
and Y are the proportions of time that line 1 and line
2 are in use, respectively. The joint probability density
function for ( X, Y ) is given by

f (x, y ) =
� 3

2 (x2 + y2), 0 � x, y � 1,
0, elsewhere.

(a) Determine whether or not X and Y are indepen-
dent.
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(b) It is of interest to know something about the pro-
portion of Z = X + Y , the sum of the two propor-
tions. Find E (X + Y ). Also “nd E (XY ).

(c) Find Var( X ), Var( Y ), and Cov( X, Y ).
(d) Find Var( X + Y ).

4.71 The length of time Y , in minutes, required to
generate a human re”ex to tear gas has the density
function

f (y) =
� 1

4 eŠ y/ 4 , 0 � y < 	 ,
0, elsewhere.

(a) What is the mean time to re”ex?

(b) Find E (Y 2) and Var( Y ).

4.72 A manufacturing company has developed a ma-
chine for cleaning carpet that is fuel-e�cient because
it delivers carpet cleaner so rapidly. Of interest is a
random variable Y , the amount in gallons per minute
delivered. It is known that the density function is given
by

f (y) =
�

1, 7 � y � 8,
0, elsewhere.

(a) Sketch the density function.

(b) Give E (Y ), E (Y 2), and Var( Y ).

4.73 For the situation in Exercise 4.72, compute
E (eY ) using Theorem 4.1, that is, by using

E (eY ) =
� 8

7
ey f (y) dy.

Then compute E (eY ) not by using f (y), but rather by
using the second-order adjustment to the “rst-order
approximation of E (eY ). Comment.

4.74 Consider again the situation of Exercise 4.72. It
is required to “nd Var( eY ). Use Theorems 4.2 and 4.3
and de“ne Z = eY . Thus, use the conditions of Exer-
cise 4.73 to “nd

Var( Z ) = E (Z 2) Š [E (Z )]2.

Then do it not by using f (y), but rather by using
the “rst-order Taylor series approximation to Var( eY ).
Comment!

4.75 An electrical “rm manufactures a 100-watt light
bulb, which, according to speci“cations written on the
package, has a mean life of 900 hours with a standard
deviation of 50 hours. At most, what percentage of
the bulbs fail to last even 700 hours? Assume that the
distribution is symmetric about the mean.

4.76 Seventy new jobs are opening up at an automo-
bile manufacturing plant, and 1000 applicants show up
for the 70 positions. To select the best 70 from among
the applicants, the company gives a test that covers
mechanical skill, manual dexterity, and mathematical
ability. The mean grade on this test turns out to be
60, and the scores have a standard deviation of 6. Can
a person who scores 84 count on getting one of the
jobs? [Hint : Use Chebyshev•s theorem.] Assume that
the distribution is symmetric about the mean.

4.77 A random variable X has a meanµ = 10 and a
variance � 2 = 4. Using Chebyshev•s theorem, “nd
(a) P (|X Š 10| � 3);
(b) P (|X Š 10| < 3);
(c) P (5 < X < 15);
(d) the value of the constant c such that

P (|X Š 10| � c) � 0.04.

4.78 Compute P(µ Š 2� < X < µ + 2 � ), where X
has the density function

f (x) =
�

6x(1 Š x), 0 < x < 1,
0, elsewhere,

and compare with the result given in Chebyshev•s
theorem.

Review Exercises

4.79 Prove Chebyshev•s theorem.

4.80 Find the covariance of random variables X and
Y having the joint probability density function

f (x, y ) =
�

x + y, 0 < x < 1, 0 < y < 1,
0, elsewhere.

4.81 Referring to the random variables whose joint
probability density function is given in Exercise 3.47
on page 105, “nd the average amount of kerosene left
in the tank at the end of the day.

4.82 Assume the length X , in minutes, of a particu-
lar type of telephone conversation is a random variable
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with probability density function

f (x) =
� 1

5 eŠ x/ 5 , x > 0,
0, elsewhere.

(a) Determine the mean length E (X ) of this type of
telephone conversation.

(b) Find the variance and standard deviation of X .

(c) Find E [(X + 5) 2].

4.83 Referring to the random variables whose joint
density function is given in Exercise 3.41 on page 105,
“nd the covariance between the weight of the creams
and the weight of the to�ees in these boxes of choco-
lates.

4.84 Referring to the random variables whose joint
probability density function is given in Exercise 3.41
on page 105, “nd the expected weight for the sum of
the creams and to�ees if one purchased a box of these
chocolates.

4.85 Suppose it is known that the life X of a partic-
ular compressor, in hours, has the density function

f (x) =
� 1

900 eŠ x/ 900 , x > 0,
0, elsewhere.

(a) Find the mean life of the compressor.

(b) Find E (X 2).
(c) Find the variance and standard deviation of the

random variable X .

4.86 Referring to the random variables whose joint
density function is given in Exercise 3.40 on page 105,
(a) “nd µX and µY ;
(b) “nd E [(X + Y )/ 2].

4.87 Show that Cov( aX, bY ) = ab Cov(X, Y ).

4.88 Consider the density function of Review Ex-
ercise 4.85. Demonstrate that Chebyshev•s theorem
holds for k = 2 and k = 3.

4.89 Consider the joint density function

f (x, y ) =
� 16y

x 3 , x > 2, 0 < y < 1,
0, elsewhere.

Compute the correlation coe�cient � XY .

4.90 Consider random variables X and Y of Exercise
4.63 on page 138. Compute� XY .

4.91 A dealer•s pro“t, in units of $5000, on a new au-
tomobile is a random variable X having density func-
tion

f (x) =
�

2(1 Š x), 0 � x � 1,
0, elsewhere.

(a) Find the variance of the dealer•s pro“t.
(b) Demonstrate that Chebyshev•s theorem holds for

k = 2 with the density function above.
(c) What is the probability that the pro“t exceeds

$500?

4.92 Consider Exercise 4.10 on page 117. Can it be
said that the ratings given by the two experts are in-
dependent? Explain why or why not.

4.93 A company•s marketing and accounting depart-
ments have determined that if the company markets
its newly developed product, the contribution of the
product to the “rm•s pro“t during the next 6 months
will be described by the following:

Pro“t Contribution Probability
Š$5, 000
$10, 000
$30, 000

0.2
0.5
0.3

What is the company•s expected pro“t?

4.94 In a support system in the U.S. space program,
a single crucial component works only 85% of the time.
In order to enhance the reliability of the system, it is
decided that 3 components will be installed in parallel
such that the system fails only if they all fail. Assume
the components act independently and that they are
equivalent in the sense that all 3 of them have an 85%
success rate. Consider the random variableX as the
number of components out of 3 that fail.
(a) Write out a probability function for the random

variable X .
(b) What is E (X ) (i.e., the mean number of compo-

nents out of 3 that fail)?
(c) What is Var( X )?
(d) What is the probability that the entire system is

successful?
(e) What is the probability that the system fails?
(f) If the desire is to have the system be successful

with probability 0.99, are three components su�-
cient? If not, how many are required?

4.95 In business, it is important to plan and carry out
research in order to anticipate what will occur at the
end of the year. Research suggests that the pro“t (loss)
spectrum for a certain company, with corresponding
probabilities, is as follows:
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Pro“t Probability
Š$15, 000 0.05

$0 0.15
$15,000 0.15
$25,000 0.30
$40,000 0.15
$50,000 0.10

$100,000 0.05
$150,000 0.03
$200,000 0.02

(a) What is the expected pro“t?
(b) Give the standard deviation of the pro“t.

4.96 It is known through data collection and consid-
erable research that the amount of time in seconds that
a certain employee of a company is late for work is a
random variable X with density function

f (x) =

�
3

(4)(50 3 ) (502 Š x2), Š50 � x � 50,

0, elsewhere.

In other words, he not only is slightly late at times,
but also can be early to work.
(a) Find the expected value of the time in seconds that

he is late.
(b) Find E (X 2).
(c) What is the standard deviation of the amount of

time he is late?

4.97 A delivery truck travels from point A to point B
and back using the same route each day. There are four
tra�c lights on the route. Let X 1 denote the number
of red lights the truck encounters going from A to B
and X 2 denote the number encountered on the return
trip. Data collected over a long period suggest that the
joint probability distribution for ( X 1, X 2) is given by

x2

x1 0 1 2 3 4
0 0.01 0.01 0.03 0.07 0.01
1 0.03 0.05 0.08 0.03 0.02
2 0.03 0.11 0.15 0.01 0.01
3 0.02 0.07 0.10 0.03 0.01
4 0.01 0.06 0.03 0.01 0.01

(a) Give the marginal density of X 1.
(b) Give the marginal density of X 2.
(c) Give the conditional density distribution of X 1

given X 2 = 3.
(d) Give E (X 1).
(e) Give E (X 2).
(f) Give E (X 1 | X 2 = 3).
(g) Give the standard deviation of X 1.

4.98 A convenience store has two separate locations
where customers can be checked out as they leave.
These locations each have two cash registers and two
employees who check out customers. LetX be the
number of cash registers being used at a particular time
for location 1 and Y the number being used at the same
time for location 2. The joint probability function is
given by

y
x 0 1 2
0 0.12 0.04 0.04
1 0.08 0.19 0.05
2 0.06 0.12 0.30

(a) Give the marginal density of both X and Y as well
as the probability distribution of X given Y = 2.

(b) Give E (X ) and Var( X ).
(c) Give E (X | Y = 2) and Var( X | Y = 2).

4.99 Consider a ferry that can carry both buses and
cars across a waterway. Each trip costs the owner ap-
proximately $10. The fee for cars is $3 and the fee for
buses is $8. LetX and Y denote the number of buses
and cars, respectively, carried on a given trip. The
joint distribution of X and Y is given by

x
y 0 1 2
0 0.01 0.01 0.03
1 0.03 0.08 0.07
2 0.03 0.06 0.06
3 0.07 0.07 0.13
4 0.12 0.04 0.03
5 0.08 0.06 0.02

Compute the expected pro“t for the ferry trip.

4.100 As we shall illustrate in Chapter 12, statistical
methods associated with linear and nonlinear models
are very important. In fact, exponential functions are
often used in a wide variety of scienti“c and engineering
problems. Consider a model that is “t to a set of data
involving measured values k1 and k2 and a certain re-
sponseY to the measurements. The model postulated
is

�Y = eb0 + b1 k 1 + b2 k 2 ,

where �Y denotes the estimated value of Y , k1 and
k2 are “xed values, and b0, b1, and b2 are estimates
of constants and hence are random variables. Assume
that these random variables are independent and use
the approximate formula for the variance of a nonlinear
function of more than one variable. Give an expression
for Var( �Y ). Assume that the means of b0, b1, and b2

are known and are � 0, � 1 , and � 2, and assume that the
variances of b0, b1, and b2 are known and are � 2

0 , � 2
1 ,

and � 2
2 .
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4.101 Consider Review Exercise 3.73 on page 108. It
involved Y , the proportion of impurities in a batch,
and the density function is given by

f (y) =
�

10(1 Š y)9, 0 � y � 1,
0, elsewhere.

(a) Find the expected percentage of impurities.
(b) Find the expected value of the proportion of quality

material (i.e., “nd E (1 Š Y )).

(c) Find the variance of the random variable Z = 1 Š Y .

4.102 Project : Let X = number of hours each stu-
dent in the class slept the night before. Create a dis-
crete variable by using the following arbitrary intervals:
X < 3, 3 � X < 6, 6 � X < 9, and X � 9.
(a) Estimate the probability distribution for X .
(b) Calculate the estimated mean and variance for X .

4.5 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The material in this chapter is extremely fundamental in nature, much like that in
Chapter 3. Whereas in Chapter 3 we focused on general characteristics of a prob-
ability distribution, in this chapter we de“ned important quantities or parameters
that characterize the general nature of the system. Themean of a distribution
re”ects central tendency, and the variance or standard deviation re”ects vari-
ability in the system. In addition, covariance re”ects the tendency for two random
variables to •move togetherŽ in a system. These important parameters will remain
fundamental to all that follows in this text.

The reader should understand that the distribution type is often dictated by
the scienti“c scenario. However, the parameter values need to be estimated from
scienti“c data. For example, in the case of Review Exercise 4.85, the manufac-
turer of the compressor may know (material that will be presented in Chapter 6)
from experience and knowledge of the type of compressor that the nature of the
distribution is as indicated in the exercise. But the meanµ = 900 would be esti-
mated from experimentation on the machine. Though the parameter value of 900
is given as known here, it will not be known in real-life situations without the use
of experimental data. Chapter 9 is dedicated toestimation .



Chapter 5

Some Discrete Probability
Distributions

5.1 Introduction and Motivation

No matter whether a discrete probability distribution is represented graphically by
a histogram, in tabular form, or by means of a formula, the behavior of a random
variable is described. Often, the observations generated by di�erent statistical ex-
periments have the same general type of behavior. Consequently, discrete random
variables associated with these experiments can be described by essentially the
same probability distribution and therefore can be represented by a single formula.
In fact, one needs only a handful of important probability distributions to describe
many of the discrete random variables encountered in practice.

Such a handful of distributions describe several real-life random phenomena.
For instance, in a study involving testing the e�ectiveness of a new drug, the num-
ber of cured patients among all the patients who use the drug approximately follows
a binomial distribution (Section 5.2). In an industrial example, when a sample of
items selected from a batch of production is tested, the number of defective items
in the sample usually can be modeled as a hypergeometric random variable (Sec-
tion 5.3). In a statistical quality control problem, the experimenter will signal a
shift of the process mean when observational data exceed certain limits. The num-
ber of samples required to produce a false alarm follows a geometric distribution
which is a special case of the negative binomial distribution (Section 5.4). On the
other hand, the number of white cells from a “xed amount of an individual•s blood
sample is usually random and may be described by a Poisson distribution (Section
5.5). In this chapter, we present these commonly used distributions with various
examples.

5.2 Binomial and Multinomial Distributions

An experiment often consists of repeated trials, each with two possible outcomes
that may be labeled success or failure . The most obvious application deals with

143



144 Chapter 5 Some Discrete Probability Distributions

the testing of items as they come o� an assembly line, where each trial may indicate
a defective or a nondefective item. We may choose to de“ne either outcome as a
success. The process is referred to as aBernoulli process . Each trial is called a
Bernoulli trial . Observe, for example, if one were drawing cards from a deck, the
probabilities for repeated trials change if the cards are not replaced. That is, the
probability of selecting a heart on the “rst draw is 1/4, but on the second draw it is
a conditional probability having a value of 13/51 or 12/51, depending on whether
a heart appeared on the “rst draw: this, then, would no longer be considered a set
of Bernoulli trials.

The Bernoulli Process

Strictly speaking, the Bernoulli process must possess the following properties:

1. The experiment consists of repeated trials.

2. Each trial results in an outcome that may be classi“ed as a success or a failure.

3. The probability of success, denoted byp, remains constant from trial to trial.

4. The repeated trials are independent.

Consider the set of Bernoulli trials where three items are selected at random
from a manufacturing process, inspected, and classi“ed as defective or nondefective.
A defective item is designated a success. The number of successes is a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values ofX are

Outcome NNN NDN NND DNN NDD DND DDN DDD
x 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P(NDN ) = P(N )P(D)P(N ) =
�

3
4

� �
1
4

� �
3
4

�
=

9
64

.

Similar calculations yield the probabilities for the other possible outcomes. The
probability distribution of X is therefore

x 0 1 2 3

f (x) 27
64

27
64

9
64

1
64

Binomial Distribution

The number X of successes inn Bernoulli trials is called a binomial random
variable . The probability distribution of this discrete random variable is called
the binomial distribution , and its values will be denoted byb(x; n, p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X , the number of defectives is

P(X = 2) = f (2) = b
�

2; 3,
1
4

�
=

9
64

.
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Let us now generalize the above illustration to yield a formula for b(x; n, p).
That is, we wish to “nd a formula that gives the probability of x successes in
n trials for a binomial experiment. First, consider the probability of x successes
and n Š x failures in a speci“ed order. Since the trials are independent, we can
multiply all the probabilities corresponding to the di�erent outcomes. Each success
occurs with probability p and each failure with probability q = 1 Š p. Therefore,
the probability for the speci“ed order is px qn Š x . We must now determine the total
number of sample points in the experiment that havex successes andnŠ x failures.
This number is equal to the number of partitions of n outcomes into two groups
with x in one group andnŠx in the other and is written

� n
x

�
as introduced in Section

2.3. Because these partitions are mutually exclusive, we add the probabilities of all
the di�erent partitions to obtain the general formula, or simply multiply px qn Š x

by
� n

x

�
.

Binomial
Distribution

A Bernoulli trial can result in a success with probability p and a failure with
probability q = 1 Š p. Then the probability distribution of the binomial random
variable X , the number of successes inn independent trials, is

b(x; n, p) =
�

n
x

�
px qn Š x , x = 0 , 1, 2, . . . , n.

Note that when n = 3 and p = 1 / 4, the probability distribution of X , the number
of defectives, may be written as

b
�

x; 3,
1
4

�
=

�
3
x

� �
1
4

� x �
3
4

� 3Š x

, x = 0 , 1, 2, 3,

rather than in the tabular form on page 144.

Example 5.1: The probability that a certain kind of component will survive a shock test is 3/4.
Find the probability that exactly 2 of the next 4 components tested survive.

Solution : Assuming that the tests are independent andp = 3 / 4 for each of the 4 tests, we
obtain

b
�

2; 4,
3
4

�
=

�
4
2

� �
3
4

� 2 �
1
4

� 2

=
�

4!
2! 2!

� �
32

44

�
=

27
128

.

Where Does the Name Binomial Come From?

The binomial distribution derives its name from the fact that the n + 1 terms in
the binomial expansion of (q+ p)n correspond to the various values ofb(x; n, p) for
x = 0 , 1, 2, . . . , n. That is,

(q + p)n =
�

n
0

�
qn +

�
n
1

�
pqn Š 1 +

�
n
2

�
p2qn Š 2 + · · · +

�
n
n

�
pn

= b(0; n, p) + b(1; n, p) + b(2; n, p) + · · · + b(n; n, p).

Sincep + q = 1, we see that
n�

x =0

b(x; n, p) = 1 ,
















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































